Paediatric Hepatic International Tumour Trial

PHITT

Version 1.0
1st November 2016

Coordinating Sponsor: University of Birmingham
Sponsor protocol number: RG_15-114

CAS code: HE3026
EudraCT number: 2016-002828-85
ISRCTN reference number: TBC
Email: phitt@trials.bham.ac.uk

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 668596
TABLE OF CONTENTS

Introductory Pages ... 6
SIGNATURE PAGE ... 11
Amendments ... 12
Trial Synopsis ... 13
Trial Schema ... 16
Abbreviations ... 17
1. Background and Rationale ... 19
 1.1 Background .. 19
 1.2 Trial Rationale .. 21
2. Objectives and Outcome Measures .. 26
 2.1 Objectives .. 26
 2.2 Outcome Measures ... 28
 2.2.1 Definition of Outcome Measures ... 28
3. Trial Design .. 31
 3.1 Risk Group Assignment ... 32
4. Eligibility .. 34
 4.1 Trial Entry ... 34
 4.1.1 Inclusion Criteria ... 34
 4.1.2 Exclusion Criteria .. 34
 4.2 Allocation to Treatment Group ... 34
 4.2.1 Inclusion Criteria ... 34
 4.2.2 Inclusion Criteria Specific to Each Group ... 35
 4.3 Lifestyle guidelines ... 36
5. Screening and Consent ... 36
 5.1 Informed Consent ... 36
 5.2 Screening ... 37
 5.2.1 Screening prior to Trial Entry ... 37
 5.2.2 Screening prior to Treatment Group Allocation .. 37
6. Trial Entry .. 38
 6.1 Procedure for Online Trial Entry ... 39
 6.2 Randomisation ... 40
 6.3 Emergency trial entry .. 40
7. Central Pathology Review ... 41
8. Central Radiological Review .. 41
9. Treatment details .. 41
 9.1 Trial Treatment ... 41
 9.2 Treatment Schedule .. 43
 9.2.1 Group A - Very Low Risk HB Patients ... 43
 9.2.2 Group B – Low Risk HB Patients ... 45
 9.2.3 Group C – Intermediate Risk HB Patients ... 47
 9.2.4 Group D – High Risk HB Patients ... 51
 9.2.5 Group E – Resected HCC Patients ... 56
 9.2.6 Group F – Unresected/metastatic HCC Patients .. 57
10. Dose Modifications .. 60
 10.1 Audiological toxicity ... 60
PHITT Protocol

10.2 Cardiac toxicity ... 60
10.3 Haematological toxicity .. 60
10.4 Gastrointestinal toxicity ... 60
10.5 Nephrotoxicity / Renal function monitoring 60
10.6 Neurotoxicity .. 62
10.7 Hepatotoxicity .. 62
10.8 Mucositis .. 62

11. Assessments ... 62
11.1 Patient Assessments at Screening ... 63
11.2 Patient Assessments During Treatment 64
11.3 Biological Studies ... 74
11.3.1 Scientific Aims ... 74
11.3.2 Pathology and Biology Sampling 76
11.3.3 Toxicity Sampling .. 78
11.4 Surgical Review Study .. 79

12. Treatment Compliance ... 80

13. Supportive Treatment .. 80

14. Concomitant medication .. 80

15. Patient Follow Up ... 81

16. Treatment Discontinuation and Patient Withdrawal 81
16.1 Treatment Discontinuation .. 81
16.2 Withdrawal of consent to data collection 82
16.3 Loss to follow-up ... 82

17. Adverse Event Reporting ... 82
17.1 Reporting Requirements ... 82
17.1.1 Adverse Events and Adverse Reactions 82
17.1.2 Serious Adverse Events .. 82
17.1.3 Reporting period ... 83
17.1.4 Post study SARs and SUSARs: .. 83
17.2 Reporting Procedure .. 84
17.2.1 Site .. 84
17.2.2 UK Coordinating Centre ... 84
17.2.3 Reporting to the Competent Authority and Research Ethics Committee .. 85
17.2.4 Investigators ... 85
17.2.5 Data Monitoring Committee ... 85

18. Data Handling and Record Keeping ... 85
18.1 Data Collection .. 85
18.2 Archiving ... 86

19. Quality Management ... 86
19.1 Site Set-up and Initiation ... 86
19.2 On-site Monitoring ... 86
19.3 Central Monitoring .. 87
19.4 Audit and Inspection .. 87
19.5 Notification of Serious Breaches .. 87

20. End of Trial Definition .. 87

21. Statistical Considerations ... 88
21.1 Trial Design .. 88
21.1.1 Outcome Measures .. 88
21.2 Sample Size Considerations ... 88
21.3 Analysis of Outcome Measures ... 89
21.4 Planned Subgroup Analyses ... 89
21.5 Planned Interim Analysis ... 90
21.6 Planned Final Analyses ... 90
21.7 Stopping Guidelines .. 90
22. Trial Organisational Structure .. 91
 22.1 Coordinating Sponsor ... 91
 22.2 National Coordinating Centres (NCCs) ... 91
 22.3 Trial Management Group .. 91
 22.4 Trial Steering Committee .. 91
 22.5 Data Monitoring Committee .. 92
 22.6 Finance ... 92
 22.7 NIHR CRN Portfolio .. 92
23. Ethical Considerations ... 92
24. Confidentiality and Data Protection ... 94
25. Insurance and Indemnity ... 94
26. Publication Policy .. 94
27. Reference List .. 95
Appendix 1 - WMA Declaration of Helsinki .. 98
Appendix 2 - Definition of Adverse Events .. 99
Appendix 3 – Common Terminology Criteria for Adverse Events 100
Appendix 4 – PRETEXT ... 101
Appendix 5 – CHIC-Hepatoblastoma Stratification 108
Appendix 6 – Boston Ototoxicity Scale ... 112
Appendix 7 – RECIST Criteria 1.1 .. 114
Appendix 8 – Hepatoblastoma response criteria ... 117
Appendix 9 – SURGICAL IMAGING GUIDELINES 118

INDEX OF TABLES
Table 1 Outcome Measures .. 29
Table 2 Group A2 Treatment Cycle Schedule ... 44
Table 3 Group B1 & B2 Treatment Cycle Schedule 46
Table 4 Group C SIOPEL-3HR Treatment Cycle Schedule 48
Table 5 Group C C5VD Treatment Schedule ... 49
Table 6 Group C CDDP-M Treatment Cycle Schedule 50
Table 7 Group D SIOPEL-4 Induction Treatment Schedule 53
Table 8 Group D1 Treatment Schedule .. 54
Table 9 Group D2 Treatment Schedule .. 54
Table 10 Group D3 Treatment Schedule .. 55
Table 11 Group E2 HCC Treatment Cycle Schedule 56
Table 12 Group F PLADO+S Treatment Cycle Schedule 58
Table 13 Group F PLADO+S/GEMOX Treatment Schedule 58
Table 14 Screening Assessments .. 63
Table 15 Group A2 Assessments ... 64
Table 16 Group B Assessments ... 65
Table 17 Group C – SIOPEL-3HR Assessments ... 66
Table 18 Group C C5VD Assessments .. 68
Table 19 Group C CDDP-M Assessments ... 69
Table 20 Group D Assessments .. 70
Table 21 Group E2 Assessments .. 71
Table 22 Group F- PLADO Assessments ... 72
Table 23 Group F- PLADO/GEMOX Assessments .. 73
Table 24 Main studies planned for samples of the CLCN collection within the ChiLTERN project .. 74
Table 25 Key centres, pathologists, clinic and basic researchers involved in the research studies (detailed in Table 27) with samples of the CLCN collection ... 75
Table 26 Samples taken at Diagnosis .. 76
Table 27 Samples taken just before surgery .. 76
Table 28 Samples taken at surgery of primary tumour 77
Table 29 Samples taken at End of Treatment .. 77
Table 30 Samples taken at surgery of recurrent tumour 77
Table 31 Samples taken Pre-infusion (Day 1) .. 78
Table 32 Samples taken Mid-infusion, End-infusion, 2hr post infusion and 6hr post infusion (Day 1) ... 78
Table 33 Samples taken at 24hr post infusion (Day 2) 78
Table 34 Samples taken at 48hr post infusion (Day 4) 79
Table 35 Decision Guidelines ... 88
Table 36 Decision guidelines for randomised questions 89

INDEX OF FIGURES

Figure 1 CHIC Risk Group .. 33
Figure 2 Trial Entry Process .. 39
Figure 3 Group A Very Low Risk: Overview .. 43
Figure 4 Group B Low Risk HB Patients: Overview 45
Figure 5 Group C Intermediate Risk HB Patients: Overview 47
Figure 6 Group C SIOPEL-3HR Treatment Schedule 48
Figure 7 Group C C5VD Treatment Schedule .. 48
Figure 8 Group C CDDP-M Treatment Schedule 49
Figure 9 Group D High Risk Overview ... 52
Figure 10 Group D Treatment Schedule ... 52
Figure 11 Group E Resected HCC Patients: Overview 56
Figure 12 Group F Unresected/metastatic HCC Patients: Overview 57
Figure 13 Group F PLADO+S Treatment Schedule 58
INTRODUCTORY PAGES

<table>
<thead>
<tr>
<th>Protocol title</th>
<th>Paediatric Hepatic International Tumour Trial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protocol short name</td>
<td>PHITT</td>
</tr>
<tr>
<td>Protocol version and date</td>
<td>Version 1.0 01-Nov-2016</td>
</tr>
<tr>
<td>EudraCT number</td>
<td>2016-002828-85</td>
</tr>
<tr>
<td>Sponsor number</td>
<td>RG_15-114</td>
</tr>
<tr>
<td>CAS number</td>
<td>HE3026</td>
</tr>
<tr>
<td>ISRCTN reference number</td>
<td>ISRCTN TBC</td>
</tr>
<tr>
<td>Coordinating Sponsor</td>
<td>University of Birmingham Edgbaston Birmingham B15 2TT United Kingdom</td>
</tr>
<tr>
<td>Funded by</td>
<td>European Union’s Horizon 2020 research and innovation programme</td>
</tr>
</tbody>
</table>

Chief Investigator

Prof Bruce Morland
Consultant and Honorary Professor in Paediatric Oncology, Birmingham Children’s Hospital, UK
☎ +44 (0)121 333 8233

Co-investigators

Prof Keith Wheatley
Professor of Clinical Trials, Cancer Research UK Clinical Trials Unit (CRCTU), University of Birmingham, UK

Dr Madhumita Dandapani
Consultant Paediatric Oncologist, Queen’s Medical Centre, Derby Road, Nottingham NG7 2UH
Trial Statisticians

Ms Veronica Moroz
Senior Biostatistician, CRCTU, University of Birmingham, Birmingham UK

Mr Samuel Munoz Vicente
Biostatistician, CRCTU, University of Birmingham, Birmingham UK

Biology & Pathology Coordinators

Dr Carolina Armengol
Germans Trias i Pujol Research Institute (IGTP), Barcelona, Spain

Dr Rita Alaggio
Universita Degli Studi Di Padova, Italy

Dr Gareth Veal
Northern Institute for Cancer Research, Newcastle University, UK

Prof Roland Kappler
University Hospital Munich, Munich, Germany

Dr Torsten Pietsch
University Hospital of Bonn Institute of Neuropathology, Bonn, Germany

Dr Stefano Cairo
XenTECH, Evry, France

Dr Ivo Leuschner
Kiel Paediatric Tumour Registry, Dept. of Paediatric Pathology, University Hospital Kiel, Germany

Dr Roland Kappler
Dr von Hauner Children’s Hospital, Ludwig-Maximilians-University of Munich, Germany

Dr Julia von Fröwein
Dr von Hauner Children’s Hospital, Ludwig-Maximilians-University of Munich, Germany

Surgical Coordinators

Prof Steven Warmann
Eberhard Karls Universitaet Tuebingen, Germany

Prof Piotr Czauderna
Gdanski Uniwersytet Medyczny, Gdansk, Poland

Radiology Coordinator

Dr Derek Roebuck
Great Ormond Street Hospital, UK

Chemotherapy Coordinator

Prof Bruce Morland
Birmingham Children’s Hospital, UK
National Coordinating Investigators

<table>
<thead>
<tr>
<th>National Coordinating Investigators</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof Bénédicte Brichard</td>
</tr>
<tr>
<td>Cliniques Universitaires Saint-Luc, Brussels, Belgium</td>
</tr>
<tr>
<td>Dr Josef Malis</td>
</tr>
<tr>
<td>University Hospital Motol, Prague, Czech Republic</td>
</tr>
<tr>
<td>Dr Sophie Taque</td>
</tr>
<tr>
<td>Centre Hospitalier Universitaire Rennes, Rennes, France</td>
</tr>
<tr>
<td>Dr Irene Schmid</td>
</tr>
<tr>
<td>Dr. von Hauner Children’s Hospital, Ludwig-Maximilians-University Munich, Munich, Germany</td>
</tr>
<tr>
<td>Dr Michael Capra</td>
</tr>
<tr>
<td>Our Lady’s Children’s Hospital, Dublin, Republic of Ireland</td>
</tr>
<tr>
<td>Dr Giorgio Perilongo</td>
</tr>
<tr>
<td>Azienda Ospedaliera Di Padova, Padua, Italy</td>
</tr>
<tr>
<td>Dr Josef Zsiros</td>
</tr>
<tr>
<td>Prinses Maxima Centrum voor Kinderoncologie, Utrecht, Netherlands</td>
</tr>
<tr>
<td>Dr Eva Widing</td>
</tr>
<tr>
<td>Oslo Universitets Sykehus, Oslo, Norway</td>
</tr>
<tr>
<td>Prof Piotr Czauderna</td>
</tr>
<tr>
<td>Gdanski Uniwersytet Medyczny, Gdansk, Poland</td>
</tr>
<tr>
<td>Dr Maria Elena Mateos Gonzalez</td>
</tr>
<tr>
<td>Servicio Andaluz de Salud, Seville, Spain</td>
</tr>
<tr>
<td>Dr Gustaf Österlundh</td>
</tr>
<tr>
<td>Västra Götalandsregionen, Sweden</td>
</tr>
<tr>
<td>Dr Marc Ansari</td>
</tr>
<tr>
<td>The Swiss Paediatric Oncology Group (SPOG), Switzerland</td>
</tr>
</tbody>
</table>

COORDINATING SPONSOR

Coordinating Sponsor

University of Birmingham, Edgbaston, Birmingham. B15 2TT
COORDINATING CENTRES

United Kingdom (UK) Coordinating Centre – PHITT Trial Office

Team Leader
Ms Nicola Fenwick

Senior Trial Coordinator
Mrs Jennifer Laidler

Trial Coordinator
Mr Stephen Baker

Contact Details
Children’s Cancer Trials Team (CCTT)
Cancer Research UK Clinical Trials Unit (CRCTU),
University of Birmingham, Institute of Cancer and Genomic Sciences, Edgbaston, Birmingham. B15 2TT. UK
☎ +44 (0)121 4151061
✉ phitt@trials.bham.ac.uk
✉ +44 (0)121 414 9520

Registration/Randomisation
www.phitt.eu
In case of any problems with online registration/randomisation, details can be phoned through to the CRCTU on: ☎ +44 (0)121 414 3366 or 0800 371 969

Serious Adverse Event (SAE) Reporting
☎ +44 (0)121 414 9520 or +44 (0)121 414 7989

National Coordinating Centres (NCCs)

Belgium
Coordinating Investigator: Prof Bénédicte Brichard
Cliniques Universitaires Saint-Luc
Brussels, Belgium
☎ +32 276 41517
✉ Benedicte.brichard@uclouvain.be
☎ +3227648964

Czech Republic
Coordinating Investigator: Dr Josef Malis
University Hospital Motol, Prague, Czech Republic
☎ +420224436456
✉ josef.malis@fnmotol.cz
☎ +420224436420

France
Coordinating Investigator: Dr Sophie Taque
Centre Hospitalier Universitaire Rennes, Rennes, France
☎ +0299282555
✉ sophie.taque@chu-rennes.fr
☎ +0299283722

Germany
Coordinating Investigator: Dr Irene Schmid
Dr. von Hauner Children’s Hospital, Department of Pediatric Hematology and Oncology, Ludwig-Maximilians-University Munich, Munich, Germany
☎ +49 4400 54499 or 52645
✉ Irene.schmid@med.uni-muenchen.de
☎ +49 4400 52984
<table>
<thead>
<tr>
<th>Country</th>
<th>Coordinating Investigator</th>
<th>Address</th>
<th>Contact Information</th>
</tr>
</thead>
</table>
| Republic of Ireland | Dr Michael Capra | Our Lady’s Children’s Hospital, Dublin, Republic of Ireland | +35314096614
| | | | Michael.capra@olchc.ie
| | | | +35314563041 |
| Italy | Dr Patrizia Dall’igna | Azienda Ospedaliera Di Padova, Padua, Italy | +390498218070
| | | | giorgio.perilongo@unipd.it
| | | | +390498218487 |
| The Netherlands | Dr József Zsiros | Prinses Maxima Centrum voor Kinderoncologie, Utrecht, Netherlands | +0889727272
| | | | j.zsiros@prinsesmaximacentrum.nl
| | | | +0889725009 |
| Norway | Dr Eva Widing | Oslo Universitets Sykehus, Oslo, Norway | +4723074560
| | | | eva.widing@ous-hf.no |
| Poland | Prof Piotr Czaudernaya | Gdanski Uniwersytet Medyczny, Gdansk, Poland | +48587640190
| | | | pczaud@gumed.edu.pl |
| | | | +48587640361 |
| Spain | Dr Maria Elena Mateos Gonzalez | Servicio Andaluz de Salud, Seville, Spain | +34957736539
| | | | mariae.mateos.sspa@juntadeandalucia.es
| | | | +34957010017 |
| Sweden | Dr Gustaf Österlundh | Västra Götalandsregionen, Sweden | +46313436176
| | | | gustav.osterlundh@vgregion.se
| | | | +4631215486 |
| Switzerland | Dr Marc Ansari | The Swiss Paediatric Oncology Group (SPOG), Switzerland | +41795533626
| | | | marc.ansari@hcuge.ch |
This protocol describes the PHITT trial and provides information about procedures for patients taking part in the PHITT trial. The protocol should not be used as a guide for treatment of patients not taking part in the PHITT trial.
AMENDMENTS

The following amendments and/or administrative changes have been made to this protocol since the implementation of the first approved version:

<table>
<thead>
<tr>
<th>Amendment number</th>
<th>Date of amendment</th>
<th>Protocol version number</th>
<th>Type of amendment</th>
<th>Summary of amendment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TRIAL SYNOPSIS

Title
Paediatric Hepatic International Tumour Trial

Acronym
PHITT

Trial Design
The PHITT trial is collaborative trial involving three major clinical groups running paediatric liver tumour trials (the International Society of Paediatric Oncology Epithelial Liver Tumour Group (SIOPEL), the Liver Tumour Committee of the Children’s Oncology Group, USA (COG), the Japanese Children’s Cancer Group (JCCG) and the Society for Paediatric Oncology and Haematology, Germany (GPOH). The European Arm of the study is led by the SIOPEL group and is sponsored by the University of Birmingham, UK and detailed in this protocol. It is anticipated that the other trial groups will use a similar protocol, with an overall analysis of all patients taking place.

Objectives

Primary Objectives
- To evaluate if the treatment of Low Risk hepatoblastoma (HB) can be reduced (Group B1)
- To compare different treatment regimes for Intermediate risk HB (Group C)
- To compare different post induction treatment regimes for High Risk HB (Group D2)
- To determine the outcome is improved when GEMOX is added to PLADO in the treatment of unresected hepatocellular carcinoma HCC (Group F)
- To collect samples for biological and toxicity studies. (All groups)

Secondary Objectives
- To report outcome (including event-free survival (EFS), failure-free survival (FFS), overall survival (OS), toxicity and surgical outcome) in all patient groups.
- To validate a new global risk stratification, defined by Children’s Hepatic Tumours International Collaboration (CHIC)
- To evaluate clinically relevant factors, including the following:
 o Provide a comprehensive and highly-validated panel of diagnostic and prognostic biomarkers
 o Determine if paediatric HCC is a biologically different entity to adult HCC
 o Develop genomic and/or biomarker analysis to predict children who may have an increased risk of developing toxicity with chemotherapy.
- To establish a collection of clinically and pathologically-annotated biological samples.
- Evaluate a surgical planning tool for an impact on decision making processes in POST-TEXT III and IV HB

Outcome Measures
- EFS
- FFS
- OS
- Toxicity
- Chemotherapy-related cardiac, nephro- and oto-toxicity
- Response in HCC
- Best Response
- Surgical resectability
- Adherence to surgical guidelines
- Hearing loss
Patient Population
Patients ≤30 years of age with newly diagnosed hepatic cancers: primary paediatric hepatic malignancies HB and hepatocellular carcinoma HCC

Sample Size

<table>
<thead>
<tr>
<th></th>
<th>Expected Sample Size</th>
<th>Expected Sample Size across 3 collaborative groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group A – Very Low Risk HB</td>
<td>50</td>
<td>200</td>
</tr>
<tr>
<td>Group B – Low Risk HB</td>
<td>100</td>
<td>320</td>
</tr>
<tr>
<td>Group C – Intermediate Risk HB</td>
<td>50</td>
<td>210</td>
</tr>
<tr>
<td>Group D – High Risk HB</td>
<td>50</td>
<td>210</td>
</tr>
<tr>
<td>Group E – Resected HCC</td>
<td>10</td>
<td>50</td>
</tr>
<tr>
<td>Group F – Unresected/metastatic HCC</td>
<td>40</td>
<td>150</td>
</tr>
</tbody>
</table>

Key Eligibility Criteria

Trial Entry Inclusion Criteria
- Clinical diagnosis of HB* and histologically defined diagnosis of HB or HCC.
 *Histological confirmation of HB is required except in emergency situations where:
 -a) the patient meets all other eligibility criteria, but is too ill to undergo a biopsy safely, the patient may be enrolled without a biopsy.
 -b) there is anatomic or mechanical compromise of critical organ function by tumour (e.g., respiratory distress/failure, abdominal compartment syndrome, urinary obstruction, etc.)
 -c) Uncorrectable coagulopathy
- Age ≤30 years
- Written informed consent for trial entry

Trial Entry Exclusion Criteria
- Any previous chemotherapy or currently receiving anti-cancer agents
- Recurrent disease
- Previously received a solid organ transplant; other than orthotopic liver transplantation (OLT).
- Uncontrolled infection
- Unable to follow or comply with the protocol for any reason
- Second malignancy
- Pregnant or breastfeeding women

Treatment Allocation Inclusion Criteria
- Written informed consent for trial treatment
- Score of ≥50% Lansky scale for patients ≥16 years, or Karnofsky scale for patients <16 years,
- For patients of reproductive potential, agreement to use adequate contraception for the duration of the trial.
- Patient meets specific eligibility criteria for their allocated treatment group, for example:
 - tumour pathology type
 - risk definition according to CHIC
 - adequate renal function: serum creatinine in the normal range or ≥60mL/min/1.73m² by formal creatinine clearance method.
PHITT Protocol

- haematology: absolute neutrophil count (ANC) >0.75 x 10^9/L, platelet count >75 x 10^9/L, prothrombin time (PT) <1.2x upper limit of normal (ULN)
- adequate cardiac function: shortening fraction ≥28% or ejection fraction ≥47%

Trial Duration

Anticipated 4 years of recruitment.

Patients must have follow-up assessments for a minimum of 2 years, following trial entry. Patients will be followed up for progression and death until all trial objectives have been met.
* Patients not receiving treatment do not need to sign a Treatment Group Informed Consent Form

PHITT protocol_version 1.0_01-Nov-2016
ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABPI</td>
<td>Association of the British Pharmaceutical Industry</td>
</tr>
<tr>
<td>AE</td>
<td>Adverse Event</td>
</tr>
<tr>
<td>AFP</td>
<td>Alpha Fetoprotein</td>
</tr>
<tr>
<td>AR</td>
<td>Adverse Reaction</td>
</tr>
<tr>
<td>ALP</td>
<td>Alkaline Phosphatase</td>
</tr>
<tr>
<td>ALT</td>
<td>Alanine Transferase</td>
</tr>
<tr>
<td>AST</td>
<td>Aspartate Aminotransferase</td>
</tr>
<tr>
<td>ANC</td>
<td>Absolute Neutrophil Count</td>
</tr>
<tr>
<td>AUC</td>
<td>Area Under Curve</td>
</tr>
<tr>
<td>CCrea</td>
<td>Creatinine Clearance</td>
</tr>
<tr>
<td>CDDP</td>
<td>cis-diamminedichloridoplatinum (II) / Cisplatin</td>
</tr>
<tr>
<td>CDDP-M</td>
<td>cis-diamminedichloridoplatinum (II) / Cisplatin monotherapy</td>
</tr>
<tr>
<td>CHIC</td>
<td>Children’s Hepatic Tumours International Collaboration</td>
</tr>
<tr>
<td>CHMP</td>
<td>Committee for Medicinal Products for Human Use</td>
</tr>
<tr>
<td>CLCN</td>
<td>Childhood Liver Cancer Network</td>
</tr>
<tr>
<td>COG</td>
<td>Children’s Oncology Group</td>
</tr>
<tr>
<td>CRCTU</td>
<td>Cancer Research UK Clinical Trials Unit</td>
</tr>
<tr>
<td>CRF</td>
<td>Case Report Form</td>
</tr>
<tr>
<td>CT</td>
<td>Computerised Tomography</td>
</tr>
<tr>
<td>CTCAE</td>
<td>Common Terminology Criteria for Adverse Events</td>
</tr>
<tr>
<td>DMC</td>
<td>Data Monitoring Committee</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic Acid</td>
</tr>
<tr>
<td>DSUR</td>
<td>Development Safety Update Report</td>
</tr>
<tr>
<td>ECG</td>
<td>Electrocardiogram</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylenediaminetetraacetic Acid</td>
</tr>
<tr>
<td>EFS</td>
<td>Event-Free Survival</td>
</tr>
<tr>
<td>FFPE</td>
<td>Formalin-fixed paraffin-embedded</td>
</tr>
<tr>
<td>FFS</td>
<td>Failure-Free Survival</td>
</tr>
<tr>
<td>FS</td>
<td>Fractional Shortening</td>
</tr>
<tr>
<td>GCP</td>
<td>Good Clinical Practice</td>
</tr>
<tr>
<td>G-CSF</td>
<td>Granulocyte-Colony Stimulating Factor</td>
</tr>
<tr>
<td>GFR</td>
<td>Glomerular Filtration Rate</td>
</tr>
<tr>
<td>GP</td>
<td>General Practitioner</td>
</tr>
<tr>
<td>HB</td>
<td>Hepatoblastoma</td>
</tr>
<tr>
<td>HCC</td>
<td>Hepatocellular Carcinoma</td>
</tr>
<tr>
<td>hCG</td>
<td>Human Chorionic Gonadotropin</td>
</tr>
<tr>
<td>HE</td>
<td>Hematoxylin and Eosin</td>
</tr>
<tr>
<td>HR</td>
<td>Hazard Ratio</td>
</tr>
<tr>
<td>ICF</td>
<td>Informed Consent Form</td>
</tr>
<tr>
<td>IDMC</td>
<td>Independent Data Monitoring Committee</td>
</tr>
<tr>
<td>IMP</td>
<td>Investigational Medicinal Product</td>
</tr>
<tr>
<td>ISF</td>
<td>Investigator Site File</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
</tr>
<tr>
<td>ITT</td>
<td>Intention-To-Treat</td>
</tr>
<tr>
<td>MDT</td>
<td>Multi-Disciplinary Team</td>
</tr>
<tr>
<td>MHRA</td>
<td>Medicines and Healthcare products Regulatory Agency</td>
</tr>
<tr>
<td>MRI</td>
<td>Magnetic Resonance Imaging</td>
</tr>
<tr>
<td>NCC</td>
<td>National Coordinating Centre</td>
</tr>
<tr>
<td>NCI</td>
<td>National Cancer Institute</td>
</tr>
<tr>
<td>NIMP</td>
<td>Non-Investigational Medicinal Product</td>
</tr>
<tr>
<td>OLT</td>
<td>Orthotopic liver transplantation</td>
</tr>
<tr>
<td>OS</td>
<td>Overall Survival</td>
</tr>
<tr>
<td>MUGA</td>
<td>Multi-gated Radionuclide Angiography</td>
</tr>
<tr>
<td>PBSC</td>
<td>Peripheral Blood Stem Cell</td>
</tr>
<tr>
<td>PET</td>
<td>Positron Emission Tomography</td>
</tr>
<tr>
<td>PIS</td>
<td>Patient Information Sheet</td>
</tr>
<tr>
<td>PT</td>
<td>Prothrombin Time</td>
</tr>
<tr>
<td>RDE</td>
<td>Remote Data Entry</td>
</tr>
<tr>
<td>REC</td>
<td>Research Ethics Committee</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonucleic Acid</td>
</tr>
<tr>
<td>SAE</td>
<td>Serious Adverse Event</td>
</tr>
<tr>
<td>SPC</td>
<td>Summary Product Characteristics</td>
</tr>
<tr>
<td>SUSAR</td>
<td>Suspected Unexpected Serious Adverse Reaction</td>
</tr>
<tr>
<td>TMG</td>
<td>Trial Management Group</td>
</tr>
<tr>
<td>TSC</td>
<td>Trial Steering Committee</td>
</tr>
<tr>
<td>UK</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>WDF</td>
<td>Well Differentiated Fetal histology</td>
</tr>
<tr>
<td>WMA</td>
<td>World Medical Association</td>
</tr>
</tbody>
</table>
1. BACKGROUND AND RATIONALE

1.1 Background

Primary liver tumours (hepatoblastoma (HB) and hepatocellular carcinoma (HCC)) in children account for 1% of paediatric tumours. The incidence, however, has been increasing with improved neonatal care for preterm infants, who have an increased risk of developing HB [1]. HB has an annual incidence of 0.8 per million children. HCC is less common with over 500,000 people affected worldwide.

Currently, the 5 year overall survival (OS) for children with HB is variable and ranges from about 50-100% depending on the disease characteristics. Among those ‘cured’, current treatment regimens have a risk of significant toxicities including cisplatin-induced oto-toxicity and nephrotoxicity, doxorubicin-induced cardiomyopathy and secondary leukaemia. In patients treated for HB with 600 mg/m² of cumulative cisplatin, hearing loss to the point of requiring augmentation devices occurs in half of all patients [2], severely impacting childhood development and quality of life. The lethal impact of anthracycline-induced cardiomyopathy and secondary leukaemia is self-evident. The Paediatric Hepatic International Tumour Trial (PHITT) trial will investigate whether reductions in therapy reduce the risk of both short- and long-term side effects for patients with good prognosis without compromising their good outcomes and whether intensifying treatments with the introduction of new agents improves outcomes for those with a poor prognosis.

Results of previous studies (treatment approaches) in hepatoblastoma

Studies in HB have previously been conducted by the four main paediatric oncology consortia, namely the Liver Tumour Strategy group of the International Society of Paediatric Oncology (SIOPEL) in Europe, the Children’s Oncology group (COG) in North America, the Japanese study group for paediatric tumours (JPLT) and German Society for Paediatric Oncology and Haematology (GPOH). These are summarized below.

SIOPEL studies

The SIOPEL-1 (1990-1994) study established the efficacy of cisplatin / doxorubicin (PLADO) combination therapy in HB. Patients were treated with 4 pre-operative cycles of PLADO followed by resection or transplant and two further post-operative courses of PLADO. The 5-year event free survival (EFS) was 66% (95% CI 59-74%) and the overall survival (OS) was 75% (95% CI 68-82%) [3]. This trial also validated the pre-treatment extent of tumour (PRETEXT) staging system (see Appendix 4), which has since been used to stage patients with HB.

SIOPEL-2 (1994-98) was a pilot study that stratified patients into two groups - standard-risk (SR) patients with tumour confined to the liver and involving no more than three hepatic sectors, and high-risk (HR) patients with HB extending into all four sectors and/or with lung metastases or intra-abdominal extra hepatic spread. SR-HB patients were treated with four courses of cisplatin monotherapy (CDDP 80mg/m²) every 14 days, delayed surgery and then two more CDDP courses. HR-HB patients were given CDDP alternating every 14 days with carboplatin (CARBO) 500 mg/m², and doxorubicin (DOXO) 60 mg/m². Two courses of CARBO/DOXO and one of CDDP were given postoperatively. For SR-HB patients (n=77), 3-year OS and PFS were 91% and 89% respectively, suggesting that cisplatin alone was sufficient to treat this group of patients. Despite intensification of therapy in the HR-HB group (n=58), OS was 53% and progression-free survival (PFS) was 48%, respectively [4]. Multivariate analysis of prognostic factors identified the adverse prognostic value of AFP < 100 ng/mL in HR-HB patients.

SIOPEL-3 (1998-2006) compared CDDP monotherapy and CDDP/DOXO (PLADO) in SR-HB patients in a prospective randomised trial. Three-year EFS and OS were similar in both groups: 83% (95% CI 77 to 90) and 95% (95% CI 91 to 99) in the cisplatin group, and 85% (95% CI 79 to 92) and 93% (95% CI 88 to 98) in the PLADO group. Thus cisplatin monotherapy was shown to be sufficient in the treatment of patients with SR-HB [4]. In the high-risk patients, the efficacy of the dose-intense multi-agent chemotherapy regimen piloted in SIOPEL2-HR was tested in this multicentre prospective trial. Of the 150 patients evaluable for response, 118 (79%) achieved a partial response to chemotherapy. Complete resection of the tumour could be achieved in 115 patients (76%) either by partial
hepatectomy (56%) or by liver transplantation (21%). In 106 patients (70%), complete resection of all tumour lesions (including metastases) was achieved. Among the patients with initial lung metastases, 52% achieved complete remission of the lung lesions with chemotherapy alone. EFS and OS estimates at 3 years were 65% (95% CI 57% to 73%) and 69% (95% CI 62% to 77%) for the whole group. EFS and OS for all patients with PRETEXT-IV tumours were 68% and 69%, respectively, and 56% and 62%, respectively, for patients with metastasis. This strategy significantly improved the resectability of tumours in HR-HB patients [5].

SIOPEL-4 (2005-09) was a prospective single-arm feasibility study in patients with HR-HB with further intensification of platinum chemotherapy with weekly administration in combination with doxorubicin followed by surgical removal of all remaining tumour lesions if feasible (including liver transplantation and metastasectomy). Patients whose tumour remained unresectable received additional preoperative chemotherapy with CARBO and DOXO. After surgery, postoperative chemotherapy with CARBO and DOXO was given to patients who didn’t receive this regime pre-operative. The primary endpoint was complete remission at the end of treatment. Sixty two patients were evaluated and complete resection of all tumour lesions was achieved in 46 patients (74%). At the end of therapy, 49 of 62 patients (79%, 95% CI 67 to 88) were in complete remission. 3-year EFS was 76% (95% CI 65 to 87) and 3-year OS was 83% (73 to 93). 19 out of 20 patients with lung metastases at presentation cleared their metastases and achieved remission at the end of treatment.

COG studies

INT-0098 (1989-92) was a randomised trial comparing the two regimens known to be effective in HB: cisplatin, vincristine, and fluorouracil (C5V) and PLADO. Five-year EFS estimates were 57% (SD = 5%) and 69% (SD = 5%) for patients on C5V and PLADO, respectively (P = 0.09). Toxicities were greater with PLADO with 2 toxic deaths. Therefore C5V was adopted as the preferred regimen for treating HB [6].

The next COG study, P9645 (1999-2002) was a randomised trial comparing a novel regimen with increased platinum dose-intensity alternating carboplatin and cisplatin (CC) every 2 weeks with C5V in patients with unresectable HB. The 1-year EFS was 37% for patients receiving CC and 57% for those receiving C5V (P = 0.017). The study concluded that alternating platinum analogues increased the risk of adverse outcome in children with unresectable or metastatic HB [7]. This study also demonstrated that surgical resection alone may be sufficient for patients with Stage I HB with pure foetal histology (PFH).

In the ongoing COG study, AHEP0731 (2009-present), patients with stage I PFH are classified as very low risk and treated with resection only. Patients with stage I non-PFH and stage I and II non-small cell undifferentiated histology (SCU) are termed as low risk and treated with resection and 2 cycles of C5V chemotherapy. Patients with stage I and II SCU histology and all stage III patients are classified as intermediate risk and receive 6 cycles of C5V plus doxorubicin (C5VD) in total with surgery after either 2 or 4 cycles of chemotherapy. Patients with stage IV disease or any stage plus an alpha-fetoprotein (AFP) level at diagnosis of <100 ng/mL are classified as high risk and receive up-front window therapy with vincristine and irinotecan followed by C5VD.

JPLT studies:

JPLT-1 (1991-99) was a non-randomised study of 154 patients with malignant liver tumour including 145 cases of HB. Patients with stage I or II HB received courses of lower dose cisplatin (CDDP), 40 mg/m² and tetrahydropyranyl (THP)-Adriamycin, 30 mg/m². Patients with stage IIIA, IIIB, or IV hepatoblastoma received CDDP, 80 mg/m² and THP-Adriamycin, 30 mg/m²/day for 2 days. Courses were repeated every 4 weeks as tolerated. OS (3-year/ 6-year) was 100%/100% for stage I (n = 9), 100%/96% for stage II (n = 32), 77%/74% for stage IIIA (n = 48), 50%/50% for stage IIIB (n = 25), 65%/39% for stage IV (n = 20), and 78%/73% overall. For stage IIIA and B disease, intravenous chemotherapy was better than intra-arterial chemotherapy (66% v 38% for EFS and 69% v 57% for OS). The OS and EFS rates were comparable with the results of other multi-centre studies in Europe and the United States [8].

JPLT-2 (1999-2008) included 212 HB patients and used the PRETEXT staging system. PRETEXT I patients were treated with primary resection followed by low doses of cisplatin–pirarubicin (tetrahydropyranyl-adriamycin). Otherwise, patients received preoperative cisplatin–pirarubicin (CITA),...
followed by surgery and postoperative chemotherapy. Ifosfamide, pirarubicin, etoposide, and carboplatin (ITEC) were given as a salvage treatment. High-dose chemotherapy with hematopoietic stem cell transplantation (SCT) was reserved for patients with metastatic disease. The 5-year OS in non-metastatic cases was 100% for PRETEXT I, 87.1% for PRETEXT II, 90% for PRETEXT III, and 78% for PRETEXT IV. The 5-year OS in metastatic cases was 44% [9].

GPOH Studies

HB 94 (1994-97) was a prospective, single-arm study to assess the efficacy of chemotherapy consisting of cisplatin, ifosfamide, and doxorubicin (IPA) and the addition of etoposide and carboplatin (VP16/CARBO) for recurrent or advanced Stage III or IV tumours (post-surgical staging system). 69 children were enrolled. OS was 77%. Disease free survival (DFS) and EFS were Group I DFS 89%, EFS 96%; Group II DFS and EFS 100%, Group III DFS 68% and EFS 76% and group IV DFS 21% and EFS 36%. The pre-treatment prognostic factors identified included vascular tumour invasion (p=0.0039), occurrence of distant metastases (p<0.0001), initial extremely high (>1,000,000ng/mL) or very low (<100ng/mL) AFP level (p=0.0034) and extent of resection (p=0.0001) [10].

The HB-99 (1999-2008) study aimed to improve the outlook for the HR patients with HB. 142 patients were analysed, 91 had SR HB and 51 had HR disease. The SR patients were treated with two to three courses of IPA, followed by a tumour resection and a postoperative course of IPA. 21 patients with a small tumour underwent primary resection followed by two courses of IPA. The HR patients were treated with two courses of CARBO/VP16. Responders then received high dose chemotherapy with CARBO/VP16 with stem cell transplantation followed resection of the primary tumour and if necessary resection of the metastases. Poor responders received IPA. 6 out of the 51 high risk patients had an AFP less than 100 ng/mL. All 6 patients died [11].

1.2 Trial Rationale

The aim of the PHITT trial is to build on the cooperative experience of the different consortia to undertake four randomised comparisons in groups of patients with tumours (HB and HCC).

The SIOPEL and JPLT consortia utilized the PRETEXT system while COG has used a surgical based staging system. This difference in staging systems used to stratify patients has made direct comparison of results between cooperative group specific trials difficult. To address this issue, the recently formed Childhood Hepatic tumour International Consortium (CHIC) group combined the clinical data from 8 prior multicentre trials conducted by COG, SIOPEL, GPOH, and the JPLT establishing a database consisting of 1,605 patients. Analyses of the database have been performed with the goal to create an evidence-based risk stratification that would serve as the foundation for this study. Identified risk factors, associated with varying EFS include PRETEXT group, age at diagnosis, AFP level and the presence of a PRETEXT annotation factor. In this trial, a common risk stratification schema integrating the CHIC identified risk factors will be, for the first time, used to stage patients into four risk groups: Very Low (Group A), Low (Group B), Intermediate (Group C), and High (Group D) (see Appendix 5).

This trial will evaluate whether reducing treatment for low risk patients maintains their excellent EFS and decreases acute and long-term toxicity. Intensification of therapy with the use of novel agents will be evaluated in the high risk group. The trial will also compare three different regimens in intermediate risk HB. Patients with HCC will be divided into two groups, E and F based on whether the tumour is resectable (group E) or unresectable and/or metastatic (group F). The aim is to evaluate whether survival in patients in group E with de-novo HCC using PLADO chemotherapy is improved and to evaluate whether resectability and survival is improved in patients in group F using novel therapeutic agents in combination with PLADO as detailed later.

Evaluation of the biology of HB and HCC, using the identification/validation of novel and already reported prognostic biomarkers as well as toxicity biomarkers is a key strand of this trial, so patients in all risk groups can be registered. The trial is also designed to optimise the collection of clinically annotated biologic specimens and establish the world’s largest repository of blood and tissue samples from paediatric patients with HB and HCC.
Justification of design, patient population and therapy in HB

Due to the rarity of HB, this trial has been designed as the first international co-operative liver tumour trial based on a consensus approach involving SIOPEL, COG and JPLT in order to recruit the number of patients required to answer the research questions. NB- JPLT was incorporated into the Japanese Children’s Cancer Group (JCCG) in summer of 2016 and has been renamed as the Liver tumour committee in JCCG.

Group A (Very Low Risk) - These patients will receive standard treatment and there are no therapeutic research questions. When feasible, definitive surgical resection at presentation has been an integral part of the treatment strategy for patients treated in COG and JPLT trials resulting in excellent outcomes with >90% EFS. In contrast, patients treated in SIOPEL trials commonly receive neo-adjuvant chemotherapy. In previous COG trials, outcomes in patients with completely resected tumours with central review confirmed well-differentiated foetal (WDF) histology (previously classified as PFH with low mitotic activity) were excellent with surgery alone [12]. In PHITT patients with localized tumours with WDF histology will be treated with surgery alone.

In the P9645 study, patients who were completely resected at diagnosis but did not have WDF histology received 4 cycles of C5V (cisplatin/5-fluorouracil/vincristine) with a 5-year EFS and OS of 84% and 96%, respectively [13]. AHEP0731 built upon these results reducing therapy from 4 to 2 cycles of C5V with an EFS of >90% (personal communication, Howard Katzenstein). Data supporting the benefit of 5-FU and vincristine in the management of HB remain indirect; SIOPEL studies have demonstrated high cure rates with single agent cisplatin monotherapy alone [4]. Therefore, patients with completely resected disease at diagnosis but who do not have WDF histology will receive two cycles of adjuvant cisplatin therapy. These patients will be resected without pre-treatment chemotherapy. This cohort will contribute to the evaluation of the HB molecular profile and a substantial reduction of therapy across the consortia. The outcome following upfront surgery in this group of patients and the outcome for patients following post-operative surgery will be reported. The linking of molecular profiles to clinical features and PRETEXT is instrumental to guide therapy reduction in future trials.

Group B (Low Risk) - PHITT divides patients with localised disease (with AFP >100ng/mL and age less than 8 years old) into two groups based on results from the CHIC analysis. Group B includes patients with initially unresectable disease defined as PRETEXT I, II and III tumours with no PRETEXT annotation factors (VPEFR). In AHEP0731, these patients received 4 cycles of adjuvant chemotherapy with C5V. In SIOPEL-3, most such patients were treated effectively with 6 cycles of cisplatin monotherapy [4], with surgical resection typically after the fourth neo-adjuvant cycle and OS approaching 90%. This suggests that this group of patients may be over-treated. Cisplatin ototoxicity remains a significant long term side effect of therapy, and among other risk factors, correlates with exposure, with the highest risk for hearing impairment occurring in the dose range > 400mg/m2 [2, 14, 15]. In this group, therapy reduction will be investigated by randomising patients who undergo early resection with a randomisation between a total of 4 versus 6 cycles of cisplatin. The study of the HB molecular profile of this group of patients could help in predicting patient response and improving current risk stratification to adapt chemotherapy regimens according to biology in future trials.

Group C (Intermediate Risk) - Group C will consist of patients with locally advanced tumours including PRETEXT I, II and III tumours with a positive annotation factor and all PRETEXT 4 tumours. In this group, a three way randomisation will compare C5VD versus SIOPEL-3HR versus dose-compressed cisplatin every 2 weeks. The rationale for this approach is based on the following considerations.

In the recent AHEP 0731 study, the intermediate risk group (which included this type of patient treated with C5VD chemotherapy) outcome at 3-years was OS of 94%, (personal communication, Howard Katzenstein). Anthracycline toxicity (cardiac, added marrow suppression) is a targetable challenge for all non-metastatic HB patients with a favourable prognosis and, given this excellent outcome, may now include Group C patients. Additionally, the role of vincristine and 5-flourouracil is unclear having never been reliably established in HB. Interestingly, vincristine was the agent dose-modified most frequently on AHEP0731 due to toxicity (3-fold compared with other agents) (personal communication, Howard Katzenstein).

In the SIOPEL-3 standard risk study where dose compressed cisplatin was compared to dose compressed cisplatin/doxorubicin in PRETEXT I-III patients without advanced positive annotation...
factor components, dose compressed cisplatin alone was sufficient as both arms had similar response rates, resection rates, EFS and OS [4]. These results raise the question as to the benefit of doxorubicin used front-line for non-metastatic patients. In the SIOPEL-3HR study, advanced PRETEXT I-III tumours with positive annotation factors or PRETEXT IV tumours were treated with alternating courses of cisplatin and carboplatin with doxorubicin with an improvement in EFS (65%) and OS (69%) compared to previous studies. Based on these data, it is worth investigating whether giving an effective agent (i.e. cisplatin or doxorubicin) every 1-2 weeks is the important determinant for survival; cisplatin every 2 weeks might be equally if not more efficacious than q 3 weekly standard combination therapy. Evolution of surgical treatment approaches may be another important factor leading to improved survival in this cohort. The proposed randomised question is a rational progression forward based on results achieved in recent SIOPEL and COG trials.

Group D (High Risk) - Outcomes of children with metastatic HB are poor, with 5-year EFS of <30% and 5-year OS of <60%. In SIOPEL-4, a cisplatin timing intensified treatment strategy was used. The 3-year EFS for patients who cleared (n = 20; rapid complete pulmonary responders) and did not clear (n = 19; incomplete pulmonary responders) metastatic disease by the end of Induction therapy was 95% and 53%, respectively [5]. 19/20 patients who cleared metastases before surgery achieved CR at the end of treatment with few relapses past remission [16]. These data suggest that a pulmonary response-based approach could optimise outcomes for patients with metastatic HB. In PHITT, patients will receive SIOPEL-4 induction therapy as standard treatment; favourable responders (those who are clear of metastatic disease at the end of induction, or those who qualified for the high risk cohort because age>8 or AFP<100 in the absence of metastatic disease) will be assigned to Group D1. Unfavourable responders (those who have residual metastatic disease at the end of induction) will be assigned to Group D2.

Group D1 - Consolidation with Carboplatin/Doxorubicin will be given as standard therapy, with no therapeutic research question in this group

Group D2 - Randomisation between two novel consolidation regimens, with no standard treatment control arm - Carboplatin/Doxorubicin and Irinotecan/Vincristine versus Carboplatin/Doxorubicin and Carboplatin/Etoposide

In SIOPEL-4, inducing metastatic remission was the key to preventing mortality, as relapses post remission were uncommon [16]. Consequently, Group D2 will evaluate two extended consolidation regimens using additional agents with demonstrated activity in HB. The rationale for including irinotecan/vincristine in an extended consolidation is that the activity of irinotecan has been established both in SIOPEL and COG trials. In a SIOPEL Phase II trial of irinotecan in relapsed and refractory HB, twenty-four patients (11 relapses, 13 refractory diseases) were treated. Of the 23 evaluable patients, six had an overall partial response and 11 had stable disease [17]. In AHEP0731, thirty patients with metastatic disease were treated with two cycles of irinotecan and vincristine in an upfront window of which twenty-three of these patients responded to therapy (personal communication, Howard Katzenstein). The selection of carboplatin/etoposide for the other extended consolidation arm is based on the activity of this combination in GPOH trials. Although this combination adds only one “new agent” (etoposide) to the SIOPEL-4 backbone, carboplatin/etoposide is the only chemotherapy combination shown to be effective in relapsed or refractory HB [10]. Etoposide in combination with carboplatin was used in a window trial design analogous to that used in AHEP0731 in GPOH HB 94, where 18 children with advanced HB were treated with carboplatin and etoposide, with a response achieved by 12 children (67%) [10]. Additionally, the SIOPEL 1-3 studies showed that this regimen had a similarly high response rate in patients with relapsed HB (62%, 8/13 patients) [16]. A benefit of the prolongation of the consolidation course is that it provides additional time and opportunity to perform surgical interventions in the context of systemic chemotherapy to control metastatic disease based on the effectiveness of metastectomy in recurrent HB.

Rationale of HCC therapy

Background:

Patients with HCC have previously been treated on the same protocols as patients with HB. In the INT0098 study, 46 HCC patients were enrolled. After initial surgery or biopsy patients were randomised to CSVD or PLADO as described in the HB section with comparable outcomes. For the entire cohort, 5-year EFS was 19% (SD=6%). Patients with stage I (n=8), II (n=25), and IV (n=13) had 5-year EFS of 88% (SD=12%), 8% (SD=5%), and 0% respectively. Therefore, while children with resectable HCC had a good prognosis, those with advanced disease had a poor outcome [18].
Similarly, 39 children with HCC were treated on the SIOPEL-1. 37 received PLADO chemotherapy. 33% of patients had underlying cirrhosis. Partial response was observed in 18 (49%) of 37 patients; there was either no response or progression in the remainder. Complete tumour resection was achieved in 14 patients (36%). Twenty patients (51%) never became operable. OS at 5 years was 28%, and EFS was 17%. Presence of metastases and pre-treatment extent of disease system grouping at diagnosis had an adverse influence on overall survival in multivariate analysis. Prognosis of patients with HCC was significantly inferior to those with HB [19].

The SIOPEL-2 and -3 studies included 85 patients with HCC. 13 underwent upfront surgery whilst 72 patients received PLADO chemotherapy [20]; 40% patients responded to chemotherapy with an OS of 22%. These data confirm the need for novel approaches to improve survival in patients with HCC. The GPOH group has tested the role of sorafenib in combination with PLADO chemotherapy in a small series of 12 patients, 7 of whom had unresectable disease at diagnosis. Sorafenib was well tolerated and achieved CR in 50% of patient at a median follow up of 20 months [21].

HCC Risk Stratification - Outcomes for patients with HCC are critically dependent upon the ability to achieve complete resection. In PHITT, patients will be stratified into two study cohorts, those with resected disease at diagnosis and those with unresected or metastatic disease at diagnosis. The trial is designed to optimise the collection of clinically annotated biologic specimens and establish the world’s largest repository of paediatric HCC specimens which can be analysed to help determine why paediatric HCC exhibits a heterogeneous spectrum of clinical behaviour [22] and determine which biologic features correlate best with treatment response and survival.

HCC Biology - Paediatric HCC is biologically heterogeneous group of tumours. HCC may present in children with underlying liver pathology, but will also occur de novo. Underlying liver diseases in which paediatric HCC has been reported include familial cholestatic syndromes (Progressive familial intrahepatic cholestasis and Alagille’s syndromes), extrahepatic biliary atresia, total parenteral nutrition and in association with tyrosinemia, glycogenosis, neurofibromatosis, ataxia-telangiectasia, Fanconi’s anaemia and other constitutional and genetic abnormalities [23]. The fibrolamellar variant of HCC (FL_HCC) constitutes a distinctive variant of HCC that occurs almost exclusively in adolescents and young adults without underlying liver disease, accounting for almost a third of HCCs in patients under 20 years of age [24]. A unique, pathognomonic DNAJB1-PRKACA chimeric transcript has been detected in these patients, suggesting its importance in the pathogenesis this subtype [25]. Additionally, a small number of paediatric tumours demonstrate a mixture of histological patterns of both HB and HCC in the same tumour, or intermediate features, precluding their exact classification. Some of these tumours diagnosed in older children and carrying CTNNB1 mutations, may represent HB with HCC molecular features [26], particularly those with TERT promoter mutations. The molecular genetic alterations of HCC and the abnormalities involved in hepatocarcinogenesis, have been extensively studied in adult tumours [27, 28]. Gene expression profiling studies have specifically addressed differences between clinical HCC subtypes and searched for biomarkers that could serve as prognostic predictors, or therapeutic targets [29, 30]. A number of recently published NGS (Next Generation Sequencing) studies on HCC identified additional genetic alterations including mutations in genes involved in epigenetic regulation, WNT, cell cycle and chromatin remodelling pathways [31-33]. Unfortunately, most of the studies did not include paediatric cases.

In PHITT, the characterisation of the molecular profile of all HCCs will be done using a comprehensive next-generation sequencing mutation panel (Oncomine Comprehensive Array, Thermo Fisher Scientific), and a whole-genome scanning SNP array platform to detect gains, losses, LOH, and genomic stability (Affymetrix Oncoscan FFPE Assay). In addition immunohistochemical analysis will be performed to determine the expression of prognostic hepatic progenitor markers and activation of key signalling pathways, following testing algorithms previously described for HBs. In Europe, large scale genomic, transcriptomic, and epigenetic profiling of banked, clinically annotated frozen HCC tumour specimens collected in the study, will be performed to address strictly biological aims of the study, as previously described. The HB biomarker panel studied for HB patients will be also assessed in HCC samples to evaluate its diagnostic and prognostic performance in this patient population.
Determination of effective chemotherapeutic regimens in HCC

Group E - HCC resected at diagnosis. Studies in adult HCC do not support a role for post resection chemotherapy; however, all three paediatric consortia have reported good survival rates using cisplatin and doxorubicin [18, 19, 21]. The group of HCC patients undergoing resection at diagnosis, either by means of a subtotal or complete heptectomy during liver transplantation, are a heterogeneous cohort consisting of: 1) HCC arising in the context of underlying metabolic, genetic or viral infection-mediated predisposition for liver dysfunction/cirrhosis, 2) HCC arising de novo. The de novo group is comprised of patients with one of two histopathologic diagnoses: FL or non-FL-HCC. While there is substantial variation in the chemotherapeutic approach used to treat this group of patients, there is growing expert consensus regarding the post-resection observation of patients diagnosed with HCC arising in the context of genetic predisposition (as the patient’s tolerance for chemotherapy in the context of cirrhosis or in the post-transplant period is not ideal). The remaining patients, those with de novo, non-FL HCC are typically felt to warrant therapy. The only existing data supporting treatment in these patients come from INT-0098 [18] which demonstrated an 88% 5-yr EFS for stage I patients treated either with C5V or cisplatin and continuous infusion of doxorubicin (n=8) and from the SIOPEL-1 trial [19] which described a PR rate of 49% in patients treated with PLADO and a resectability rate of 36% in these patients.

Patients with HCC arising in the context of predisposition to underlying liver dysfunction due to infection, metabolic, genetic, or anatomic considerations (Group E1) will be observed and patients with de novo HCC (both FL-HCC and non-FL-HCC - Group E2) will receive standard treatment with 4 cycles of PLADO. There are no therapeutic research questions in this group. As described above, we also propose a uniform approach towards exploratory genomic transcriptomic and proteomic analysis of the tumours to correlate biologic heterogeneity with treatment approach and patient outcome.

Group F - HCC Unresected and/or metastatic at diagnosis - The outcome of patients who present with unresected or metastatic disease is poor. However, while adult studies show less than 20% response to chemotherapy, paediatric studies have demonstrated a nearly 50% response. While no standard of therapy has been established for paediatric patients with advanced HCC, data so far supports the use of PLADO and sorafenib [21]. Adult studies have demonstrated the therapeutic efficacy and feasibility of gemcitabine/oxaliplatin (GEMOX) [34-36]. A recent paediatric-focused abstract compiling retrospective data has demonstrated a nearly 30% response rate with these agents [37]. Given the dismal outcomes of paediatric patients with advanced HCC and the crucial importance of achieving complete resection, PHITT will study chemotherapeutic efficacy in this patient cohort.

Patients will be randomised to receive either PLADO plus sorafenib given every 21 days versus interval-compressed PLADO plus sorafenib alternating with GEMOX plus sorafenib every 14 days with assessment for safety, response and surgical resection rates. Previously published data has demonstrated the tolerability of sorafenib in combination with PLADO as well as GEMOX [21, 38]. The selected sorafenib dose for this trial is below that recommended for paediatric monotherapy (200 mg/m² q12hrs [39]) and the median of that reported for use in PLADO/sorafenib combination therapy [21].

Role of molecular stratification in HB

Current patient stratification and treatment rely only on clinical and pathological criteria. Nowadays, there is an urgent need to incorporate biological data into clinical practice, which has been successful in other cancers (e.g. lung, breast cancer). To date, few biomarkers of liver cancer have been identified, the majority of them in limited series of patients and their incorporation into the clinical practice have been impeded by the lack of validation studies in large series of cases. This trial offers a unique opportunity to discover and validate diagnostic and prognostic biomarkers in an extensive prospective cohort of patients. The next step will be to apply the highly-validated panel of biomarkers discovered during this trial to the current and future therapies and stratification systems.

In Europe, a tri-national validation study of liver cancer prognostic biomarkers in a retrospective cohort of 161 cases from Spain, France and Germany demonstrated the improvement of current clinical classification by incorporating the 16-gene signature and NQO1 gene expression as well as NFE2L2 and TERT promoter mutations [26, 40]; Moreover, a recent proteomic study identified a 3-protein signature which is able to classify patients into three different prognostic groups and complements clinical stratification [41].
In the US, the largest and most recent HB genomic profiling study [42], identified three distinct risk-stratifying molecular HB subtypes: low, intermediate and high risk tumours. High-risk tumours are characterized by a combination of high NFE2L2 activity, high levels of LIN28B, HMGA2, SALL4 and AFP expression, along with low let-7 expression and HNF1A activity. High-risk tumours are also characterized by high coordinated expression of onco-fetal proteins and stem cell markers. Genomic instability was primarily found in the high and intermediate risk groups, while low risk groups were genetically stable. Parallel testing of a 3S sample HB validation set suggested that immunohistochemical analysis using a panel of antibodies targeting NFE2L2, LIN28B, HNF1A, HMGA2, SALL4 and AFP, particularly when used in combination with targeted mutation testing and cytogenomic analysis, may serve to identify molecular profiles predictive of response to therapy.

This trial will collect and molecularly characterise the tumour specimens with the aim to identify and validate diagnostic and prognostic biomarkers for improving current patient stratification by incorporating biological data. Accordingly, all HCC tumours including key gene mutations and hypermethylation, copy number changes as well as gene and protein expression signatures will be molecularly profiled, to determine the clinical value and role in future treatment algorithms. Specifically, diagnostic and resection formalin-fixed, paraffin embedded as well as frozen tissue specimens from every patient will be tested using targeted sequencing (CTNNB1, NFE2L2, TERT promoter), a comprehensive next-generation sequencing mutation panel (Oncomine Comprehensive Array, Thermo Fisher Scientific), and a whole-genome scanning SNP array platform to detect gains, losses and LOH, (Affymetric Oncocan FFPE Assay) and to assess genomic stability. Secreted biomarkers will be also assessed in blood (e.g. DKK1). In Europe, it is also planned to perform large scale genomic, transcriptomic, proteomic and epigenetic profiling of banked, clinically annotated frozen tumour specimens collected in the study in order to identify new biomarkers of aggressive HBs (see chapter 10.4 for details). In addition immunohistochemical analysis will be performed to determine the expression of prognostic hepatic progenitor markers and activation of signalling pathways as well as the 3-protein signature among other markers, using diagnostic and resection specimens, and to determine its utility to predict response to therapy. It is expected that integration of biomarkers associated with response to therapy and prognosis into clinical stratification algorithms will provide therapeutic guidance and help to better prognostically classify HB patients in the future. Finally, patient-derived xenografts and primary cell cultures will be established from fresh tumour specimens for future pre-clinical studies.

2. OBJECTIVES AND OUTCOME MEASURES

2.1 Objectives

The PHITT trial is an over-arching study including 4 randomised comparisons addressing therapeutic questions.

This trial will use a risk-adapted approach to the treatment of children diagnosed with HB. Children with HCC will also be included as a separate cohort.

Primary Objectives

Group A - Very Low Risk HB

Patients depending on their tumour histology will be treated with standard treatment as defined by the protocol. The primary aim for this group is to collect samples for biological and toxicity studies.

Group B - Low Risk HB

In patients who are resected after 2 courses (Group B1), the aim is to evaluate whether the outcome with a total of 4 cycles of treatment is not inferior to those receiving a total of 6 cycles of treatment.

Patients who are not resected after 2 courses (Group B2) will be treated with standard treatment as defined by the protocol. The primary aim for this group is to collect samples for biological and toxicity studies.
Group C - Intermediate Risk HB
To compare outcome and toxicity in patients treated with:

- cisplatin/5-fluorouracil/vincristine/doxorubicin (C5VD)
- SIOPEL-3 high risk chemotherapy with cisplatin, carboplatin and doxorubicin (SIOPEL-3HR)
- dose compressed cisplatin monotherapy (CDDP-M)

Group D - High Risk HB
In patients who have cleared metastatic disease with induction chemotherapy, treatment is standard as defined by the protocol. The primary aim for this group is to collect samples for biological and toxicity studies.
In patients who have not cleared metastatic disease with induction chemotherapy, the aim is to compare the outcomes of the following post induction treatments:

(i) carboplatin and doxorubicin (CD) alternating with carboplatin and etoposide (CE)
(ii) carboplatin and doxorubicin (CD) alternating with vincristine and irinotecan (VI)

Group E - Resected HCC
Patients will be treated with standard treatment as defined by the protocol. The primary aim for this group is to collect samples for biological and toxicity studies.

Group F - Unresected HCC
The aim is to determine whether the addition of gemcitabine, oxaliplatin and sorafenib (GEMOX + sorafenib) to cisplatin, doxorubicin and sorafenib (PLADO+Sorafenib), in a dose compressed fashion improves outcome.

Secondary Objectives

- To report outcome (including EFS, OS, toxicity and surgical outcome) in all patient groups.
- To validate a new global risk stratification, defined by Children's Hepatic Tumours International Collaboration (CHIC)
- To evaluate clinically relevant factors, including the following:
 - To provide a comprehensive and highly-validated panel of diagnostic and prognostic biomarkers
 - To determine if paediatric HCC is a biologically different entity to adult HCC
 - To develop genomic and/or biomarker analysis to predict children who may have an increased risk of developing toxicity with chemotherapy.
- To establish a collection of clinically and pathologically-annotated biological samples.
2.2 Outcome Measures

2.2.1 Definition of Outcome Measures

The trial includes a common set of outcomes that will be measured in randomised groups with group specific measures selected from the common set. Table 1 below specifies the outcome measures for each group.

Event-free survival (EFS) is defined as the time from randomisation (or registration into the trial for non-randomised patients) to first failure event. Patients who have not had an event will be censored at their last follow-up date.

Failure events are:
- progression of existing disease or occurrence of disease at new sites,
- death from any cause prior to disease progression,
- diagnosis of a second malignant neoplasm.

Failure-free survival (FFS) is defined as per EFS (above) with the addition of failure to go to resection.

Overall survival (OS) is defined as the time from randomisation (or registration for non-randomised patients) to death from any cause. Patients who have not died will be censored at their last follow-up date.

Toxicity will be recorded in relation to each cycle of randomised treatment and will be categorised and graded using Common Terminology Criteria for Adverse Events (CTCAE) (see Appendix 3).

Chemotherapy-related cardiac, nephro- and oto-toxicity will be recorded in relation to each cycle of treatment and will be categorised and graded using Common Terminology Criteria for Adverse Events (CTCAE) (see Appendix 3).

Hearing loss will be measured according to the SIOP Boston Scale for oto-toxicity (see Appendix 6). The assessment will be performed at end of treatment (EOT) and follow up.

Response in HCC is defined as complete (CR) or partial (PR) response according to RECIST version 1.1 criteria, see Appendix 7. The assessment will be performed after 3 cycles of PLADO, or 4 cycles of PLADO+S/GEMOX+S in Group F. Patients who are not assessable for response – e.g. because of early stopping of treatment or death – will be assumed to be non-responders.

Best Response is defined as CR or PR and is defined in Appendix 8 based on radiological response (RECIST v1.1) and AFP decline. Best Response will be measured throughout treatment period. Patients who are not assessable for response – e.g. because of early stopping of treatment or death – will be assumed to be non-responders.

Surgical resectability is defined as complete resection, partial resection or transplant following randomisation (or enrolment for non-randomised patients).

Adherence to surgical guidelines is defined as the local clinician’s surgical decision to resect or not compared to the current SIOPPEL surgical guidelines.
Table 1 Outcome Measures

<table>
<thead>
<tr>
<th>Group</th>
<th>Randomisation</th>
<th>Outcome measures</th>
<th>Expected Total N** (SIOPEL)</th>
<th>Total N** (All collaborators)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A - Very Low Risk HB Patients</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group A1 - WDF histology</td>
<td>No</td>
<td>• EFS</td>
<td>15</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• OS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Adherence to surgical guidelines</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group A2 - Non WDF histology</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• EFS</td>
<td>35</td>
<td>170</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• OS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Chemotherapy-related toxicity</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Hearing loss</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Adherence to surgical guidelines</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B - Low Risk HB Patients</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group B1 - Resected after 2 cycles</td>
<td>Yes</td>
<td>• EFS*</td>
<td>35</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• OS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Toxicity</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Chemotherapy-related toxicity</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Best response</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Hearing loss</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Adherence to surgical guidelines</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group B2 - Not resected after 2 cycles</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• EFS</td>
<td>65</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• FFS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• OS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Chemotherapy-related toxicity</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Best response</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Surgical resectability</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Hearing loss</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Adherence to surgical guidelines</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group</td>
<td>Randomisation</td>
<td>Outcome measures</td>
<td>Expected Total N** (SIOPEL)</td>
<td>Total N** (All collaborators)</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>---------------</td>
<td>--</td>
<td>-----------------------------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>C - Intermediate Risk HB Patients</td>
<td>N/A</td>
<td>Yes</td>
<td>50</td>
<td>210</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• EFS*</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• FFS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• OS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Toxicity</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Chemotherapy-related toxicity</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Best response</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Hearing loss</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Adherence to surgical guidelines</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D - High Risk HB Patients</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group D1- Good responders</td>
<td>No</td>
<td></td>
<td>24</td>
<td>100</td>
</tr>
<tr>
<td>Group D2/D3- Poor responders</td>
<td>Yes</td>
<td></td>
<td>26</td>
<td>110</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• EFS*</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• FFS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• OS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Toxicity</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Chemotherapy-related toxicity</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Best Response</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Hearing loss</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Adherence to surgical guidelines</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E - Resected HCC Patients</td>
<td></td>
<td></td>
<td>3</td>
<td>15</td>
</tr>
<tr>
<td>Group E1- HCC secondary to underlying disease</td>
<td>No</td>
<td>• EFS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group E2- de novo HCC</td>
<td>No</td>
<td>• OS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Surgical resectability</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• EFS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• OS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Chemotherapy-related toxicity</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Toxicity</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Hearing loss</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3. TRIAL DESIGN

An international, over-arching phase III trial, with four randomised comparisons, for paediatric, adolescent and young adult patients with newly diagnosed HB and HCC. This trial includes a registration phase (trial entry) where patients will give consent for the analysis of their biological samples, tumour pathology and imaging reports to determine the grading and status of the disease, before being allocated in a Treatment Group.

Patients with HB are classed into four risk-stratified groups and treated using different regimens. HCC patients are treated in two risk-stratified groups.

PHITT is the clinical trial within the Children’s Liver Tumour European Research Network (ChiLTERN) Programme. The ChiLTERN Programme will address the following key issues facing children with liver cancer recruited in the PHITT trial:

- Provide a comprehensive and highly validated panel of diagnostic and prognostic biomarkers in both HB and HCC
- Determine if paediatric HCC is a biologically different entity to adult HCC
- Validate prospectively a clinical risk stratification
- Establish a robust repository of clinical and pathological-annotated biological samples from paediatric patients with HB or HCC, including a collection of patient-derived xenografts and primary cell cultures
- Develop genomic and biomarker analysis to predict children who may have an increased risk of developing toxicity with chemotherapy
- Evaluate a surgical planning tool for an impact on decision making processes in POST-TEXT III and IV HB
3.1 Risk Group Assignment

Patients with HB will be assigned to one of four risk cohorts according to a new staging system developed by CHIC.

Surgery outcome, PRETEXT grouping, age and AFP level are used to stratify patients into Very Low, Low, Intermediate and High Risk Groups as shown in Figure 1 CHIC Risk Group below.

Current available SIOPEL surgical guidelines and details on PRETEXT grouping (Appendix 4) should be referred to.
Figure 1 CHIC Risk Group

PRETEXT I

- M- any AFP

PRETEXT II

- M- any AFP

PRETEXT III

- M- any AFP

PRETEXT IV

- M- any AFP

M: Metastases
VPEFR: PRETEXT Annotation Factors (V, ingrowth vena cava all hepatic veins; P, ingrowth both R & L portal veins or bifurcation; E, contiguous extrahepatic tumor; F, multifocal tumor; R, tumor rupture prior to diagnosis)
4. ELIGIBILITY

4.1 Trial Entry
Patients must meet the following criteria to be eligible for registration into the trial.

4.1.1 Inclusion Criteria
- Clinical diagnosis of HB* and histologically defined diagnosis of HB or HCC.
 *Histological confirmation of HB is required except in emergency situations where:
 -a) the patient meets all other eligibility criteria, but is too ill to undergo a biopsy safely, the patient may be enrolled without a biopsy.
 -b) there is anatomic or mechanical compromise of critical organ function by tumour (e.g., respiratory distress/failure, abdominal compartment syndrome, urinary obstruction, etc.)
 -c) Uncorrectable coagulopathy
- Age ≤30 years
- Written informed consent for trial entry

4.1.2 Exclusion Criteria
- Any previous chemotherapy or currently receiving anti-cancer agents
- Recurrent disease
- Previously received a solid organ transplant; other than orthotopic liver transplantation (OLT)
- Uncontrolled infection
- Unable to follow or comply with the protocol for any reason
- Second malignancy
- Pregnant or breastfeeding women

4.2 Allocation to Treatment Group
Patients must meet the specific eligibility criteria for their allocated treatment group, as listed below before entry into a treatment group. Patients who will not receive treatment, are not required to sign an additional Treatment Group consent.

4.2.1 Inclusion Criteria
- Written Informed Consent for trial treatment
- Patient assessed as fit to receive group specific treatment as defined below
- Score of ≥50% Lansky scale for patients ≥16 years, or Karnofsky scale for patients <16 years,
- For female patients of child-bearing potential, a negative pregnancy test prior to starting trial treatment is required. Any patient who is of reproductive age must agree to use adequate contraception for the duration of the trial. For further details see Section 4.3.
4.2.2 Inclusion Criteria Specific to Each Group

<table>
<thead>
<tr>
<th>GROUP</th>
<th>TUMOUR</th>
<th>RISK DEFINITION</th>
<th>PATHOLOGY</th>
<th>RENAL FUNCTION<sup>1</sup></th>
<th>HAEMATOLOGY<sup>2</sup></th>
<th>CARDIOLOGY<sup>3</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>Resected</td>
<td>Very Low Risk HB</td>
<td>Real time review required– WDF histological result</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>A2</td>
<td>Resected</td>
<td>Very Low Risk HB</td>
<td>Real time review required– Non-WDF histological result</td>
<td>serum creatinine in the normal range OR GFR ≥60mL/min/1.73m²</td>
<td>ANC >0.75x10⁹/L Platelet count >75x10⁹/L PT <1.2x ULN</td>
<td>N/A</td>
</tr>
<tr>
<td>B1 B2</td>
<td>N/A</td>
<td>Low Risk HB</td>
<td>N/A</td>
<td>serum creatinine in the normal range OR GFR ≥60mL/min/1.73m²</td>
<td>ANC >0.75x10⁹/L Platelet count >75x10⁹/L PT <1.2x ULN</td>
<td>N/A</td>
</tr>
<tr>
<td>C (all treatments)</td>
<td>N/A</td>
<td>Intermediate Risk HB</td>
<td>N/A</td>
<td>serum creatinine in the normal range OR GFR ≥60mL/min/1.73m²</td>
<td>ANC >0.75x10⁹/L Platelet count >75x10⁹/L PT <1.2x ULN</td>
<td>Shortening fraction ≥28% OR Ejection fraction ≥47%</td>
</tr>
<tr>
<td>D (all treatments)</td>
<td>N/A</td>
<td>High Risk HB</td>
<td>N/A</td>
<td>serum creatinine in the normal range OR GFR ≥60mL/min/1.73m²</td>
<td>ANC >0.75x10⁹/L Platelet count >75x10⁹/L PT <1.2x ULN</td>
<td>Shortening fraction ≥28% OR Ejection fraction ≥47%</td>
</tr>
<tr>
<td>E1</td>
<td>Resected</td>
<td>HCC secondary to underlying liver disease</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>E2</td>
<td>Resected</td>
<td>HCC de novo, including fibrolamellar</td>
<td>N/A</td>
<td>N/A</td>
<td>serum creatinine in the normal range OR GFR ≥60mL/min/1.73m²</td>
<td>ANC >0.75x10⁹/L Platelet count >75x10⁹/L PT <1.2x ULN</td>
</tr>
<tr>
<td>F</td>
<td>Not resected or metastatic HCC</td>
<td>N/A</td>
<td>N/A</td>
<td>serum creatinine in the normal range OR GFR ≥60mL/min/1.73m²</td>
<td>ANC >0.75x10⁹/L Platelet count >75x10⁹/L PT <1.2x ULN</td>
<td>Shortening fraction ≥28% OR Ejection fraction ≥47%</td>
</tr>
</tbody>
</table>

¹Normal range based on age-based local reference values. If Creatinine is outside normal range for age, formal GFR should be estimated according to local practice.

²ANC – Absolute neutrophil count, PT – Prothrombin Time, ULN – Upper limit of normal for age-based local reference values.

³Shortening fraction or Ejection fraction by local institution assessment method.
4.3 Lifestyle guidelines

Patients with reproductive potential must agree to use an adequate (i.e. with a failure rate of less than 1% per year) method of birth control during the period of therapy. Men should be advised not to father a child up to 6 months after receiving the last dose. Women of childbearing potential should be advised to use effective contraception to avoid pregnancy up to 6 months after the last dose of study treatment. Effective contraceptive methods include implants, injectables combined oral contraceptives, intrauterine device (IUD or coil), and sexual abstinence or vasectomised partner.

5. SCREENING AND CONSENT

5.1 Informed Consent

It is the responsibility of the Investigator or person to whom the Investigator delegates the responsibility, to obtain written informed consent for each patient prior to performing any trial related procedure in compliance with national regulations. Where this responsibility has been delegated, this must be explicitly stated on a Site Signature and Delegation Log (or country specific equivalent).

There will be two steps of informed consent: at Trial Entry and then at allocation to the Treatment Group. Consent must be obtained separately. Country specific Patient/Parent Information Sheets (PIS) are provided to facilitate this process.

Investigators must ensure that they adequately explain the aim, trial treatment, anticipated benefits and potential hazards of taking part in the trial to the patient and/or parent/legal guardian as appropriate. The Investigator should also stress that the patient and/or parent/legal guardian is completely free to refuse to take part or withdraw from the trial at any time. The patient and/or parent/legal guardian should be given sufficient time (e.g. 24 hours) to read the PIS and to discuss the patient’s participation with others outside of the site research team if they wish to. The patient and/or parent/legal guardian must be given an opportunity to ask questions which should be answered to their satisfaction. The right of the patient and/or parent/legal guardian to refuse to participate in the trial without giving a reason must be respected.

As the trial includes both child and adult patients, written consent/assent will be obtained from the patient wherever it is possible to do so (as appropriate according to age and national legislation). There is a section on the parent consent form where assent can be obtained from the patient. For those children who are not able to read, write or understand regarding assent, the clinician will explain the study and obtain verbal assent which will be documented in the patient’s medical records. Patients should be re-consented at the age of majority in accordance with national guidance/legislation.

If the patient and/or parent/legal guardian agrees to participate in the trial, they should be asked to sign and date the latest version of the Informed Consent Form (ICF). The Investigator must then sign and date the form on the same day. A copy of the ICF should be given to the patient and/or parent/legal guardian, a copy should be filed in the patient’s medical records, and the original placed in the Investigator Site File (ISF) or country specific equivalent. Once the patient is entered into the trial, the patient’s trial number should be entered on the ICF filed in the ISF. If allowed by country specific legislation/guidance) and if the patient and/or parent/legal guardian has given explicit consent, a copy of the signed ICF must be sent in the post to the applicable National Coordinating Centre (NCC) for review.

Details of the informed consent discussions should be recorded in the patient’s medical records; this should include date of, and information regarding, the initial discussion, the date consent was given, with the name of the trial and the version number of the PIS and ICF. Throughout the trial, the patient and/or parent/legal guardian should have the opportunity to ask questions about the trial and any new information that may be relevant to the patient’s continued participation should be shared with them in a timely manner. On occasion it may be necessary to re-consent the patient, in which case the process above should be followed and the patient’s right to withdraw from the trial respected.

Electronic copies of the PIS and ICF are available from the applicable NCC and should be printed or photocopied onto the headed paper of the local institution where required by country specific legislation/guidance.
Investigators will be expected to maintain a screening log of all potential study participants. This log will contain limited information about the potential participant and will include the date and outcome of the screening process.

With the patient’s or patient’s parent/guardian’s prior consent, their medical practitioner (General Practitioner (GP) in the UK) should also be informed that they are taking part in the trial. A GP Letter is provided electronically for this purpose but it is anticipated that both this letter and the PIS will be translated and adapted in accordance with national practices.

5.2 Screening

Note that assessments conducted as standard of care do not require informed consent and may be provided as screening data. The date protocol therapy is projected to start should be no later than 15 days from trial entry. Investigators are encouraged to enrol patients immediately following histological diagnosis and begin protocol therapy within 28 days of the initial surgical procedure.

5.2.1 Screening prior to Trial Entry

Trial specific investigations must not be undertaken without prior written informed consent. To determine eligibility for Trial Entry, a histologically confirmed diagnosis of HB* or HCC is required. *Histological confirmation of HB is required except in emergency situations where:
- a) the patient is too ill to undergo a biopsy safely
- b) there is anatomic or mechanical compromise of critical organ function by tumour (e.g., respiratory distress/failure, abdominal compartment syndrome, urinary obstruction, etc.)
- c) Uncorrectable coagulopathy

5.2.2 Screening prior to Treatment Group Allocation

All clinical and laboratory studies to determine eligibility for treatment must be performed within 28 days prior to treatment group allocation.

- Medical history
- PRETEXT staging assessment completed. Refer to Risk Group Assignment (Section 3.1) and Appendix 4 (PRETEXT) for further details.
- Full physical examination (including blood pressure, weight, height and surface area)
- Performance status using Lansky or Karnofsky grading systems
- Laboratory tests
 - Haematology (includes Haemoglobin (Hb), white blood cells (WBC), differential cell count, neutrophil count, lymphocytes and platelets)
 - Biochemistry (includes sodium, potassium, calcium, urea, creatinine, total protein, albumin, bilirubin, alkaline phosphatase (ALP), gamma-glutamyl transpeptidase (GGT), lactate dehydrogenase (LDH), alanine transaminase (ALT) or aspartate transaminase (AST), ammonia)
 - Coagulation (including International normalised ratio (INR) and activated partial thromboplastin time (APTT))
 - AFP
 - Hepatitis B and C serology
 - A pregnancy test (serum or urine) will be done on female patients who are of child bearing potential
- Radiological assessments:
 - Tumour evaluation of primary tumour disease (MRI or CT)
 - Tumour evaluation of metastases (Chest CT)
- Cardiology assessment by local institution assessment method is required for Intermediate (Group C) and High (Group D) Risk HB, and HCC (Groups E and F) patients
- Tissue samples for Pathology/Biology studies (refer to section 11.3)
- Blood samples for Pathology/Biology and Toxicity studies (refer to section 11.3)
6. **TRIAL ENTRY**

Patients can be entered into the trial once the applicable NCC has confirmed that all regulatory requirements have been met by the trial site and the site has been activated by the UK Coordinating Centre.

It will be proposed to the patient and/or patient's parent/guardian to participate in the PHITT trial by signing the Trial Entry ICF. Investigators are encouraged to approach patients and obtain written informed consent ahead of any planned biopsy/surgery, to allow the required tissue samples to be taken and used for the purposes of the PHITT Trial. Once informed consent has been obtained, patients are assessed for eligibility and disease staging using screening assessments and pathology review (if required). See Screening (Section 5.2) for further details. Importantly, samples taken at diagnosis represent the most important biological material of this trial and should be reserved for biology. Subsequent samples during and after the treatment of enrolled patients should be also taken for biology (Please refer to most recent version of PHITT Laboratory Manual before taking samples).

The treatment group allocation and treatment details are then discussed with the patient, and the patient and/or patient's parent/guardian signs a Treatment Group ICF to confirm the patient's participation in the trial treatment. Allocation into a Treatment Group must be performed prior to the commencement of any trial treatment. This procedure is outlined in the diagram below.
6.1 Procedure for Online Trial Entry

Informed consent must be obtained prior to performing Trial Entry. Trial Entry, Treatment Group allocation and randomisation, where appropriate, should be performed by sites using the online remote data entry (eRDE) system provided by CINECA at the protocol specified time point/s. In order to register a patient into the trial, allocate a patient to a treatment group or randomise a patient, an appropriate eligibility checklist must be completed. See Eligibility (Section 4) for details. All of the required information must be available at the time of trial entry, treatment group allocation or randomisation.

*Patient and/or patient’s parent/guardian

** Investigators are encouraged to arrange biopsy/surgery to confirm diagnosis following obtaining informed consent, to enable pathology sample collection (refer to section 11.3).
The date protocol therapy is projected to start should be no later than 15 days from trial entry. Investigators are encouraged to enrol patients immediately following histological diagnosis and begin protocol therapy within 28 days of the initial surgical procedure.

Registration, Treatment Group allocation and randomisation of patients can be achieved by logging on to the PHITT eRDE system.

Go to www.phitt.eu

Refer to PHITT eRDE User Manual for more details.

A confirmation of the trial entry, treatment group allocation and randomisation result, as appropriate, should be printed and retained in the ISF and the patient’s hospital records.

If allowed by country specific legislation/guidance a copy of the patient’s ICF must be sent to the applicable NCC, if explicit consent has been given for this.

6.2 Randomisation

The randomisation program will allocate treatment via a computerised minimisation algorithm, developed by CINECA. All of the required information on stratification factors must be available at the time of randomisation. For randomisation in Groups B, C and D, patients will be stratified by collaborative group (SIOPEL/COG/JCCG), Group F will be stratified by collaborative group (SIOPEL/COG/JCCG) and presence of metastases at diagnosis. Patients will be allocated in a 1:1 ratio for each comparison. Randomisation in each group will be carried out according to the treatment schedule. Refer to Sections 9.2.2 (Group B), 9.2.3 (Group C), 9.2.4 (Group D) and 9.2.6 (Group F) for the Treatment schedules for each group. Patients will consent for any subsequent randomisations at the point of Treatment Group Allocation (not a separate step).

6.3 Emergency trial entry

In case of any problems with online registration/randomisation, the appropriate eligibility checklist and registration/randomisation forms should be completed. These details can be phoned through to the UK Coordinating Centre at the CRCTU using the numbers below:

RANDOMISATION
(09:00 to 17:00 GMT / BST, Monday to Friday)
☎ +44 (0)121 414 3366

General enquiries:
☎ +44 (0)121 415 1061
7. **CENTRAL PATHOLOGY REVIEW**

Patients with resected very low risk HB (Group A) require rapid review by the national reference pathologist within 14 days of resection. Representative HE stained slides of a completely embedded slice of the tumour and a representative FFPE block should be submitted for review by the reference national pathologists as soon as possible following surgery, and a response received within 14 days of resection.

For all other patients, HE stained slides of the biopsy or a completely embedded slice of the resected tumour and a representative FFPE block should be sent for central review to the national reference pathologist.

Additional tumour specimens (snap-frozen, FFPE, fresh tumour and non-tumour tissue samples) taken at diagnosis and surgery should be collected for biological studies and sent to the corresponding Childhood Liver Cancer Network (CLCN) biorepository for that country. These samples will be used to address biological secondary objectives of the trial and for future investigations.

Please refer to Biological studies (Section 11.3) and the current PHITT Laboratory Manual for more details about Pathology and Biology sampling and contact details of the national reference pathologist.

8. **CENTRAL RADIOLOGICAL REVIEW**

The Radiological and Surgical review studies investigators (listed in the Introductory pages) may be contacted to discuss individual cases.

Please refer to Surgical Review Study (Section 11.4) for more details.

9. **TREATMENT DETAILS**

9.1 **Trial Treatment**

The following drugs are regarded as Investigational Medicinal Products (IMPs) for the purposes of this trial:

- Cisplatin
- Carboplatin
- Doxorubicin
- Fluorouracil (5-FU)
- Vincristine
- Irinotecan
- Etoposide
- Sorafenib
- Gemcitabine
- Oxaliplatin

All IMPs are expected to be held as routine hospital stock and should therefore be stored and handled according to local institutional policy. Labels will be produced by each NCC in accordance with Annex 13 guidelines and national legislation.

Treatment should be prepared and administered according to the relevant Summary of Product Characteristics (SmPC) and local practice unless the trial protocol requires otherwise.

Please also see the country specific Pharmacy Manual for further details.

Current guidelines for the surgical management of liver tumours should be referred to.
Large scale genomic, transcriptomic, and epigenetic profiling of banked, clinically annotated primary and recurrent tumour specimens obtained from these patients will be performed with the aim of understanding the biology and identifying molecular risk factors linked to chemo-responsiveness. Investigators should comply with the biological sample requirements detailed in section 11.3.
9.2 Treatment Schedule

9.2.1 Group A - Very Low Risk HB Patients

Overview

These patients will have a primary resection of their tumour. Selection of the appropriate patients for consideration for up-front surgery requires good quality imaging at diagnosis and careful radiological review anticipating clear resection margins especially adjacent to vascular structures. In borderline cases we would recommend patients enter Arm B of the protocol and receive preoperative chemotherapy.

Following surgical resection, patients with Well Differentiated Foetal histology MUST have rapid central review of their pathology with an expected central review response within 14 days (refer to Section 7) to confirm eligibility. Centrally confirmed WDF patients will receive no adjuvant chemotherapy. All non-WDF patients will receive 2 cycles of cisplatin chemotherapy (CDDP-M).

Figure 3 Group A Very Low Risk: Overview

Group A Very Low Risk HB Patients: Agents and Dosing

Patients in this group will be divided into two cohorts depending on the result of the histology subtype:

- Patients with WDF histology will receive no further adjuvant chemotherapy
- Patients with Non-WDF histology will receive 2 cycles of standard dose cisplatin.

Haematological recovery to ANC >0.75x10⁹/l and platelets >75x10⁹/l should be ensured prior to Day 1 of each 21 day cycle.

Hydration fluids should be given according to local guidelines.
Table 2 Group A2 Treatment Cycle Schedule

<table>
<thead>
<tr>
<th>Group A</th>
<th>Day 1</th>
<th>Day 22</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non WDF Histology</td>
<td>Cisplatin 100mg/m² as an IV infusion</td>
<td>Day 1 of next cycle</td>
</tr>
<tr>
<td></td>
<td>over 6 hours</td>
<td></td>
</tr>
</tbody>
</table>

For patients with body weight <10kg, the following doses should be used instead of those quoted above:

- Cisplatin 3.3mg/kg
9.2.2 Group B – Low Risk HB Patients

Overview

These patients will have a tumour deemed unresectable at diagnosis but no other adverse features. The main aim of this group is to compare treatment with 2 or 4 cycles of post-operative chemotherapy. Selection of patients for consideration for early resection requires good quality imaging at diagnosis and careful radiological review anticipating clear resection margins especially adjacent to vascular structures.

PLEASE NOTE THAT RESECTION OF THE PRIMARY TUMOUR MAY OCCUR EARLY (WITHIN 2 CYCLES / 4 WEEKS FROM START OF CHEMOTHERAPY) IN THE PATIENT PATHWAY. SURGICAL PLANNING FOR A POTENTIAL RESECTION SHOULD THEREFORE COMMENCE AT THE TIME OF INITIAL DIAGNOSIS.

Patients resected after 2 cycles of chemotherapy will be eligible for a randomisation comparing 2 vs. 4 cycles of post-operative chemotherapy.

Patients not resected after 2 cycles of chemotherapy should continue to receive cisplatin in the absence of disease progression and follow the standard approach of resection after 4 cycles of chemotherapy followed by 2 post-operative cycles.

Patients who are not resected after receiving 4 cycles of cisplatin treatment should be referred to their local team for further treatment. Follow-up information should be submitted, according to Section 15. If in doubt please contact one of the chemotherapy subcommittee members.

Figure 4 Group B Low Risk HB Patients: Overview
Group B Low Risk HB Patients: Agents and Dosage

Patients in this group will receive:

- Two cycles of cisplatin
- Patients will then be assessed for resection:
 - If resection is performed, patients will then be randomised to receive an additional 2 or 4 cycles of cisplatin (4 cycles vs 6 cycles in total).
 - OR
 - If resection is not possible, patients will receive a further 2 cycles of cisplatin and ability to perform surgery will be re-assessed. If resection is not possible, the patient has discontinued trial treatment and this should be reported on the appropriate Case Report Forms (CRFs).

Haematological recovery to ANC >0.75x10^9/l and platelets >75x10^9/l should be ensured prior to each Day 1 of each 14 day cycle.

Hydration fluids should be given according to local guidelines.

Table 3 Group B1 & B2 Treatment Cycle Schedule

<table>
<thead>
<tr>
<th>Group B</th>
<th>Day 1</th>
<th>Day 15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Risk</td>
<td>Cisplatin 80mg/m^2 as an IV infusion over 6 hours</td>
<td>Day 1 of next cycle</td>
</tr>
</tbody>
</table>

For patients with body weight <10kg, the following doses should be used instead of those quoted above:

- Cisplatin 2.7mg/kg
9.2.3 Group C – Intermediate Risk HB Patients

Overview

Patients in Group C will have locally advanced tumours including PRETEXT I-III tumours with a positive annotation factor and all PRETEXT IV tumours. Early referral (at the time of diagnosis) to a transplant centre is encouraged so that sufficient time can be allowed for the surgical planning and/or transplant workup to take place. For the purposes of this study, consultation will be defined and may be accomplished in one of two ways:

1) The FIRST TIME the patient is seen face to face by the transplant physician/team in the same institution or another institution.

2) The FIRST TIME radiographic films and referral material are sent to the transplant physician/team at the same or another institution and are formally reviewed by the transplant physician/team. The transplant physician/team will communicate the result of this consultation back to the referring physician.

Patients will be randomised to one of 3 chemotherapy arms SIOPEL-3HR, C5VD or higher dose CDDP-M. The resection of the primary tumour can be considered at ANY point during therapy. The protocol gives an outline of the timing of response evaluations and possible surgical intervention but this is not mandated. However, irrespective of the timing of surgery, patients should complete all planned protocol cycles of chemotherapy (including post transplantation) and definitive surgery should occur at least prior to the last 2 cycles of chemotherapy whenever possible.

Figure 5 Group C Intermediate Risk HB Patients: Overview

* Definitive surgery should be carried out during treatment, at least prior to the last 2 cycles, when considered appropriate.
Group C Intermediate Risk HB Patients: Agents and Dosage

Patients in this group will be randomised to receive one of the following regimens:

- SIOPEL-3HR
- C5VD
- CDDP-M

Definitive surgery should be carried out during treatment, at least prior to the last 2 cycles, when possible.

SIOPEL-3HR

Figure 6 Group C SIOPEL-3HR Treatment Schedule

*Surgery can be considered at ANY time during protocol therapy. Irrespective of the timing patients should receive all protocol courses of chemotherapy.

Blocks of cisplatin chemotherapy are not dependent on haematological recovery. Haematological recovery to ANC >0.75x10^9/l and platelets >75x10^9/l should be ensured prior to each Carboplatin/Doxorubicin block. Hydration fluids should be given according to local guidelines. Dexrazoxane can be used alongside Doxorubicin as per local guidelines.

Table 4 Group C SIOPEL-3HR Treatment Cycle Schedule

<table>
<thead>
<tr>
<th>Group C</th>
<th>Day 1</th>
<th>Day 15</th>
<th>Day 16</th>
<th>Day 29</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIOPEL-3HR</td>
<td>Cisplatin 80mg/m² as an IV infusion over 6 hours</td>
<td>Carboplatin 500mg/m² as an IV infusion over 1 hour</td>
<td>Doxorubicin 30mg/m² as an IV infusion over 15 minutes – 6 hours</td>
<td>Day 1 of next cycle</td>
</tr>
</tbody>
</table>

For patients with body weight <10kg, the following doses should be used instead of those quoted above:

- Cisplatin 2.7mg/kg
- Carboplatin 16.7mg/kg
- Doxorubicin 1mg/kg

C5VD

Figure 7 Group C C5VD Treatment Schedule
"Surgery can be considered at ANY time during protocol therapy beyond cycle 2 (Day 22) but should occur at least prior to the last 2 cycles of chemotherapy when possible. Irrespective of the timing of surgery patients should receive all protocol courses of chemotherapy.

Cycles of C5VD should be given at 21 day intervals with haematological recovery to ANC >0.75x10^9/l and platelets >75x10^9/l.

Hydration fluids should be given according to local guidelines. Hydration fluids should be given according to local guidelines. Dexrazoxane can be used alongside Doxorubicin as per local guidelines.

Table 5 Group C C5VD Treatment Schedule

<table>
<thead>
<tr>
<th>Group C</th>
<th>Day 1</th>
<th>Day 2</th>
<th>Day 9</th>
<th>Day 16</th>
<th>Day 22</th>
</tr>
</thead>
<tbody>
<tr>
<td>C5VD</td>
<td>Cisplatin 100mg/m^2 as an IV infusion over 6 hours</td>
<td>5-FU 600mg/m^2 as an IV bolus</td>
<td></td>
<td></td>
<td>Day 1 of next cycle</td>
</tr>
<tr>
<td></td>
<td>Doxorubicin 30mg/m^2 as an IV infusion over 15 minutes – 6 hours</td>
<td>Doxorubicin 30mg/m^2 as an IV infusion over 15 minutes – 6 hours</td>
<td>Vincristine 1.5mg/m^2 as an IV bolus</td>
<td>Vincristine 1.5mg/m^2/dose IV bolus</td>
<td>Vincristine 1.5mg/m^2/dose IV bolus</td>
</tr>
<tr>
<td></td>
<td>Vincristine Max dose 2mg</td>
<td>Vincristine Max dose 2mg</td>
<td></td>
<td>Vincristine Max dose 2mg</td>
<td></td>
</tr>
</tbody>
</table>

For patients with body weight <10kg, the following doses should be used instead of those quoted above:

- Cisplatin 3.3mg/kg
- Doxorubicin 1mg/kg
- 5-Fluorouracil (5-FU) 20mg/kg
- Vincristine 0.05mg/kg

CDDP-M monotherapy

Figure 8 Group C CDDP-M Treatment Schedule

*Surgery can be considered at ANY time during protocol therapy beyond cycle 2 (Day 15), but should occur at least prior to the last 2 cycles of chemotherapy when possible. Irrespective of the timing of surgery patients should receive all protocol courses of chemotherapy.

Cycles of CDDP-M should be given at 14 day intervals with ANC >0.5x10^9/l and platelets >50x10^9/l.

Hydration fluids should be given according to local guidelines.
Table 6 Group C CDDP-M Treatment Cycle Schedule

<table>
<thead>
<tr>
<th>Group C</th>
<th>Day 1</th>
<th>Day 15</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDDP-M monotherapy</td>
<td>Cisplatin 100mg/m² as an IV infusion over 6 hours</td>
<td>Day 1 of next cycle</td>
</tr>
</tbody>
</table>

For patients with body weight <10kg, the following doses should be used instead of those quoted above:

- Cisplatin 3.3mg/kg
9.2.4 Group D – High Risk HB Patients

Overview

These patients will have pulmonary metastatic disease. Often patients will also have challenging primary tumours and a significant number may be considered suitable for transplantation (assuming a lung CR can be achieved). We would encourage early referral (at the time of diagnosis) to a transplant centre so that sufficient time can be allowed for the surgical planning and/or transplant workup to take place as well as to avoid extra cycles of chemotherapy that may accompany delayed transplant consultation.

Patients will receive initial chemotherapy according to the cisplatin-intensive SIOPEL-4 regimen. Following 3 blocks of chemotherapy patients will be stratified into 2 risk groups. In Group D1, patients will either have had a chemotherapy-induced lung CR, or will be rendered a lung CR by surgical metastectomy (recommended before resection of the primary tumour). These patients will have chemotherapy consolidation with carboplatin/doxorubicin. The timing of the resection of the primary tumour (including transplant) can be planned at any time after completion of the A blocks of induction therapy. Patients should receive all planned protocol doses of therapy. If surgical resection of the primary is delayed until the end of therapy, no further post-operative chemotherapy should be given.

Patients who have not achieved a lung CR (either with chemotherapy and/or surgery) at the end of block A3 will be randomised to intensified consolidation therapy of carboplatin/doxorubicin with either carboplatin/etoposide (Group D2) or vincristine/irinotecan (Group D3).

Surgical resection of the primary tumour can be considered at any time after the initial A blocks of induction therapy. Lung metastectomy should be considered in all patients if continuing to respond to consolidation therapy. Patients with delayed lung CR should still be considered for transplant, if applicable. Patients with residual disease (primary and/or metastatic) at the end of planned therapy should be discussed with one of the study co-ordinators.
Group D High Risk Patients: Agents and Dosage

All patients in this group will receive 3 blocks of SIOPEL-4 Induction, followed by consolidation therapy, determined by their response assessment.

In SIOPEL-4 Induction, Cisplatin is administered 3x in each block. Doxorubicin is administered over 2 days in each block.

Figure 10 Group D Treatment Schedule

Surgery can include liver transplantation and lung metastectomy where applicable to achieve CR
In the absence of life-threatening or grade 4 toxicities treatment in blocks A1, A2 and A3 should remain on schedule irrespective of blood counts.

Induction therapy blocks A2 and A3 should commence only with haematological recovery to ANC of >1.0x10^9/l and platelets >100x10^9/l. Postponing up to 2 weeks to allow count recovery is permissible. G-CSF should not be given initially and should only be administered prophylactically if there is a 1 week delay in administration of chemotherapy or if the patient requires hospitalisation for fever and neutropenia or for sepsis. Refer to Dose Modification Section 10.3.

Table 7 Group D SIOPEL-4 Induction Treatment Schedule

<table>
<thead>
<tr>
<th>Group D</th>
<th>SIOPEL-4 Induction Block A1</th>
<th>Day 1</th>
<th>Day 8</th>
<th>Day 9</th>
<th>Day 15</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cisplatin 80mg/m² as an IV infusion over 6 hours</td>
<td>Cisplatin 70mg/m² as an IV infusion over 6 hours</td>
<td>Doxorubicin 30mg/m² as an IV infusion over 15 minutes – 6 hours</td>
<td>Cisplatin 70mg/m² as an IV infusion over 6 hours</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Group D</th>
<th>SIOPEL-4 Induction Block A2</th>
<th>Day 29</th>
<th>Day 36</th>
<th>Day 37</th>
<th>Day 43</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cisplatin 70mg/m² as an IV infusion over 6 hours</td>
<td>Cisplatin 70mg/m² as an IV infusion over 6 hours</td>
<td>Doxorubicin 30mg/m² as an IV infusion over 15 minutes – 6 hours</td>
<td>Cisplatin 70mg/m² as an IV infusion over 6 hours</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Group D</th>
<th>SIOPEL-4 Induction Block A3</th>
<th>Day 57</th>
<th>Day 64</th>
<th>Day 65</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cisplatin 70mg/m² as an IV infusion over 6 hours</td>
<td>Cisplatin 70mg/m² as an IV infusion over 6 hours</td>
<td>Doxorubicin 30mg/m² as an IV infusion over 15 minutes – 6 hours</td>
<td>Doxorubicin 30mg/m² as an IV infusion over 15 minutes – 6 hours</td>
</tr>
</tbody>
</table>
For patients with body weight <10kg, the following doses should be used instead of those quoted above:

- Cisplatin 70mg/m²: 2.3mg/kg
- Cisplatin 80mg/m²: 2.7mg/kg
- Doxorubicin 1mg/kg.

Following SIOPEL-4 Induction, patients will be assessed for response (metastatic clearance by chemotherapy and/or surgery).

- If metastases are cleared by chemotherapy, patients will receive Group D1 consolidation therapy.
- If metastases are *not* cleared by chemotherapy, patients will be randomised to receive either:
 - Group D2 (Carboplatin + Doxorubicin alternating with Carboplatin + Etoposide)
 - OR
 - Group D3 (Carboplatin + Doxorubicin alternating with Vincristine + Irinotecan)

Group D1 Carboplatin + Doxorubicin (CD)

Haematological recovery to ANC >0.75x10⁹/l and platelets >75x10⁹/l should be ensured prior to each Day 1 of each 21 day cycle.

Table 8 Group D1 Treatment Schedule

<table>
<thead>
<tr>
<th>Group D1</th>
<th>Day 1</th>
<th>Day 2</th>
<th>Day 22</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mets cleared</td>
<td>Carboplatin 500mg/m² as an IV infusion over 1 hour</td>
<td>Doxorubicin 20mg/m² as an IV infusion over 15 minutes – 6 hours</td>
<td>Day 1 of next cycle</td>
</tr>
<tr>
<td>(CD)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For patients with body weight <10kg the following doses should be used instead of those quoted above:

- Carboplatin 16.7mg/kg
- Doxorubicin 0.67mg/kg

Group D2: Carboplatin + Doxorubicin / Carboplatin + Etoposide

Haematological recovery to ANC >0.75x10⁹/l and platelets >75x10⁹/l should be ensured prior to each Day 1 of each 21 day cycle.

Table 9 Group D2 Treatment Schedule

<table>
<thead>
<tr>
<th>Group D2</th>
<th>Cycles 1, 3 & 5</th>
<th>Day 2</th>
<th>Day 22</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mets not</td>
<td>Day 1</td>
<td>Day 1 of next cycle</td>
<td></td>
</tr>
<tr>
<td>cleared (CD / CE)</td>
<td>Carboplatin 500mg/m² as an IV infusion over 1 hour</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Doxorubicin 20mg/m² as an IV infusion over 15 minutes – 6 hours</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Day 1</td>
<td>Day 2 of next cycle</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carboplatin 400mg/m² as an IV infusion over 1 hour Etoposide 200mg/m² as an IV infusion over 4 hours</td>
<td>Day 1 of next cycle</td>
<td></td>
</tr>
</tbody>
</table>
For patients with body weight <10kg the following doses should be used instead of those quoted above:

- Carboplatin 16.7mg/kg in cycles 1, 3 and 5
- Carboplatin 13.3mg/kg in cycles 2, 4 and 6.
- Doxorubicin 0.67mg/kg
- Etoposide 6.7mg/kg

Group D3: Carboplatin + Doxorubicin / Vincristine + Irinotecan

Cycles of CD and VI should be given at 21 day intervals with haematological recovery to ANC >0.75x10^9/l and platelets >75x10^9/l

Table 10 Group D3 Treatment Schedule

<table>
<thead>
<tr>
<th>Group D3 Mets not cleared (CD / VI)</th>
<th>Cycles 1, 3 & 5</th>
<th>Day 1</th>
<th>Day 2</th>
<th>Day 22</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Carbohxatin 500mg/m² as an IV infusion over 1 hour</td>
<td></td>
<td>Day 1 of next Cycle</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Doxorubicin 20mg/m² as an IV infusion over 15 minutes – 6 hours</td>
<td>Doxorubicin 20mg/m² as an IV infusion over 15 minutes – 6 hours</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cycles 2, 4 & 6</td>
<td>Day 1</td>
<td>Days 2-5</td>
<td>Day 8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vincristine 1.5mg/m² as an IV bolus Max dose 2mg</td>
<td></td>
<td>Vincristine 1.5mg/m² as an IV bolus Max dose 2mg</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Irinotecan 50mg/m² as an IV infusion over 90 minutes</td>
<td>Irinotecan 50mg/m² as an IV infusion IV over 90 minutes</td>
<td></td>
</tr>
</tbody>
</table>

For patients with body weight <10kg the following doses should be used instead of those quoted above:

- Carboplatin 16.7mg/kg
- Doxorubicin 0.67mg/kg
- Vincristine 0.05mg/kg
- Irinotecan 1.67mg/kg/dose
9.2.5 Group E – Resected HCC Patients

Overview

These patients have primary resected HCC. Patients fall into two groups:

- **Group E1:** Patients who have an underlying predisposition to HCC through genetic, viral or metabolic conditions which often result in underlying cirrhosis. Tumours may be picked up on routine screening or as a coincidental finding in the explanted liver following transplantation. Tumours are often small and localized. Given the poor tolerability of chemotherapy either due to underlying liver disease or transplantation, the recommendation is for these patients to receive no adjuvant chemotherapy.

- **Group E2:** Patients with *de novo* HCC, which includes fibrolamellar. Patients will receive 4 cycles of PLADO chemotherapy.

![Figure 11 Group E Resected HCC Patients: Overview](image)

Group E – Resected HCC Patients: Agents and Dosage

Patients in this group will be divided into two groups depending on the tumour type defined following resection:

- **Group E1:** Patients with HCC secondary to underlying liver disease will receive no further treatment (Follow up)

- **Group E2:** Patients with *de novo*, including fibrolamellar, HCC will receive PLADO – 4 Cycles

Haematological recovery to ANC >0.75x10⁹/l and platelets >75x10⁹/l should be ensured prior to each Day 1 of each 21 day cycle.

Table 11 Group E2 HCC Treatment Cycle Schedule

<table>
<thead>
<tr>
<th>Group E2</th>
<th>Day 1</th>
<th>Day 2</th>
<th>Day 22</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLADO</td>
<td>Cisplatin 80mg/m² as an IV infusion over 6 hours</td>
<td>Doxorubicin 30mg/m² as an IV infusion over 15 minutes – 6 hours</td>
<td>Day 1 of next cycle</td>
</tr>
</tbody>
</table>

For patients with body weight <10kg, the following doses should be used instead of those quoted above:

- Cisplatin 2.7mg/kg
- Doxorubicin 1mg/kg
9.2.6 Group F – Unresected/metastatic HCC Patients

Overview

These patients have unresected and/or metastatic HCC. Tumours in this population of patients are often large and remain a surgical challenge even following a response to chemotherapy. Since complete surgical resection is a prerequisite for cure, the outlook for these patients has historically been poor. The strategy in this arm of the study is to evaluate chemotherapy response in order to drive more tumours into being resected either through partial hepatectomy or transplantation. Patients will be randomised to preoperative chemotherapy consisting of either PLADO+sorafenib or PLADO/GEMOX+sorafenib.

Given the surgical challenges posed by these tumours and the need to consider transplantation as an option, early referral (at the time of diagnosis) to a transplant centre is encouraged so that sufficient time can be allowed for the surgical planning and/or transplant workup to take place.

Figure 12 Group F Unresected/metastatic HCC Patients: Overview

Group F – Unresected/metastatic HCC Patients: Agents and Dosage

Patients in this group will be randomised to receive one of the following regimens:

- PLADO + Sorafenib
- PLADO + Sorafenib / GEMOX + Sorafenib
PLADO + Sorafenib

Figure 13 Group F PLADO+S Treatment Schedule

*Surgical resection may include transplantation and/or referral for local therapy e.g. TACE. Patients achieving a good response to chemotherapy may continue to receive further cycles per the schematic above.

Patients achieving a continuing response after Day 43 chemotherapy may continue to receive further cycles according to their randomised allocation up to a further 3 cycles of PLADO+S and 4 cycles of PLADO/GEMOX+S.

Haematological recovery to ANC >0.75x10^9/l and platelets >75x10^9/l should be ensured prior to each Day 1 of each 21 day cycle.

Table 12 Group F PLADO+S Treatment Cycle Schedule

<table>
<thead>
<tr>
<th>Group F</th>
<th>Day 1</th>
<th>Day 2</th>
<th>Days 3-21</th>
<th>Day 22</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLADO + Sorafenib</td>
<td>Cisplatin 80mg/m² as an IV infusion over 6 hours</td>
<td>Doxorubicin 30mg/m² as an IV infusion over 15 minutes – 6 hours</td>
<td>Doxorubicin 30mg/m² as an IV infusion IV over 15 minutes – 6 hours</td>
<td>Day 1 of next cycle</td>
</tr>
<tr>
<td></td>
<td>Sorafenib 150mg/m² twice daily orally</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For patients with body weight <10kg the following doses should be used instead of those quoted above:

- Cisplatin 2.7mg/kg
- Doxorubicin 1mg/kg

PLADO + Sorafenib / GEMOX + Sorafenib

Growth factors (e.g. Neulasta) may be given following Gemcitabine, according to local guidelines.

Cycles of PLADO/GEMOX+ Sorafenib should be administered every 14 days with haematological recovery to ANC >0.5x10^9/l and platelets >50x10^9/l

Table 13 Group F PLADO+S/GEMOX Treatment Schedule
| Group F
<table>
<thead>
<tr>
<th>PLADO + Sorafenib / GEMOX + Sorafenib</th>
<th>Cycles 1 & 3 (PLADO + Sorafenib)</th>
<th>Cycles 2 & 4 (GEMOX + Sorafenib)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Day 1</td>
<td>Day 2</td>
</tr>
<tr>
<td></td>
<td>Cisplatin 80mg/m² as an IV infusion for 6 hours</td>
<td>Doxorubicin 30mg/m² as an IV infusion over 15 minutes – 6 hours</td>
</tr>
<tr>
<td></td>
<td>Day 1 of next cycle</td>
<td></td>
</tr>
</tbody>
</table>

For patients with body weight <10kg, the following doses should be used instead of those quoted above:

- Cisplatin 2.7mg/kg
- Doxorubicin 1mg/kg
- Gemcitabine 33.3mg/kg
- Oxaliplatin 3.3mg/kg
10. DOSE MODIFICATIONS

10.1 Audiological toxicity

Cisplatin

Cisplatin should not be dose modified based on audiologic reports or loss of hearing. Cisplatin is considered an essential element of successful hepatoblastoma therapy.

10.2 Cardiac toxicity

Sorafenib

Sorafenib associated hypertension is usually mild to moderate, and amenable to management with standard antihypertensive therapy. Blood pressure should be monitored regularly and clinicians should have a low-threshold for initiating therapy. In cases of severe or persistent hypertension, or hypertensive crisis despite institution of antihypertensive therapy, permanent discontinuation of sorafenib should be considered.

Doxorubicin

If left ventricular ejection fraction is <47% or the fractional shortening is <27% and the patient is asymptomatic, repeat the test in 7 days. If the ejection fraction or fractional shortening remains abnormal, omit further therapy with doxorubicin. If at any time the patient develops Grade 3 congestive heart failure or any Grade 4 cardiac toxicity not related to underlying infection or metabolic abnormality, omit further therapy with doxorubicin. The use of cardioprotectant drugs such as dexrazoxane is allowed at the discretion of the investigator and should be administered in line with their institutional guidelines.

10.3 Haematological toxicity

All patients will be transfused as needed at the Investigator’s discretion to maintain an adequate haemoglobin level and platelet count. There are no restrictions on the use myeloid growth factors. When used, growth factors should be initiated at least 24 hours post chemotherapy. G-CSF is permitted according to institutional guidelines.

If the patient is due to begin a cycle of chemotherapy and the ANC and platelet count (at least 48 hours post transfusion) do not meet the criteria for beginning the next treatment cycle, delay chemotherapy until recovery occurs. If the ANC and platelet count recover within 7 days, proceed to the next cycle. If the delay is greater than 7 days, myeloid growth factors should be considered and are recommended for the subsequent cycle. If myelosuppression leads to a delay of greater than 14 days, despite the use of myeloid growth factors, chemotherapy should be dose reduced by 25%.

10.4 Gastrointestinal toxicity

Irinotecan

If Grade 3 or 4 irinotecan-associated diarrhoea is experienced by a patient despite maximal use of anti-diarrhoeal medications (e.g. loperamide) and cefixime/cefpodoxime, the dose of irinotecan should be reduced by 25% to 40mg/m² for subsequent cycles. If Grade 3 or 4 diarrhoea occurs following a 25% dose reduction in irinotecan as described above, no further irinotecan should be administered.

10.5 Nephrotoxicity / Renal function monitoring

Tubular toxicity

Renal loss of magnesium and consequent hypomagnesemia is expected on this trial. Dose modification is not required in the event of tubular toxicity and hypomagnesaemia is not a reason to dose modify or discontinue treatment. Oral magnesium supplementation may be prescribed as per local guidelines (see Supportive Treatment Section 13).
Glomerular Filtration Rate (GFR)

Measurement of GFR should be undertaken at the recommended time-points as indicated in the assessment tables (Section 11). In addition to affecting tubular function, cisplatin and carboplatin can affect renal glomerular filtration. If the serum creatinine increases to greater than the maximum serum creatinine for age (see table below), check a GFR or creatinine clearance. No dose reductions will be made for a decrease in the baseline GFR or creatinine clearance as long as the value remains >60mL/min/1.73m². Omit cisplatin and carboplatin therapy from a cycle of therapy if GFR or creatinine clearance is <60mL/min/1.73m². If cisplatin or carboplatin is held for a cycle of therapy, repeat the GFR or creatinine clearance prior to next cycle. Resume therapy at full dose if GFR or creatinine clearance >60mL/min/1.73m². If GFR or creatinine clearance do not recover, discontinue treatment.

GFR tests should not be done when a child is receiving IV hydration as the result will not be reliable. Repeat assessments should use the same technique, as per local practices.

Schwartz’s Formula (1-18 years) (Schwartz, 1987)

According to Schwartz’s formula, creatinine clearance (Ccrea) can be calculated from single serum samples:

\[
C_{\text{crea}} = \frac{F \times \text{Height [cm]}}{\text{Crea serum [mg/dl]}} \times 73 \text{m}^2/\text{min/1.73m}^2
\]

where F is proportional to body muscle mass, hence depending on age and gender:

- Infants (<1 year of age) F = 0.45
- Males, 1-16 years F = 0.55
- Females, 1-21 years F = 0.55
- Males, 16-21 years F = 0.70

Normal values [ml/min/1.73m²]:
- Normal 120
- Normal range 90-120

Cockcroft- Gault Formula (>18 years) [43]

Females

\[
1.05 \times (140 - \text{age (yrs)}) \times \frac{\text{wt(kg)}}{\text{Crea serum [\mu mol/L]}}
\]

Or

\[
0.85 \times (140 - \text{age (yrs)}) \times \frac{\text{wt(kg)}}{72 \times \text{Crea serum [mg/dl]}}
\]

Males

\[
1.25 \times (140 - \text{age (yrs)}) \times \frac{\text{wt(kg)}}{\text{Crea serum [\mu mol/L]}}
\]

Or

\[
\frac{(140 - \text{age (yrs)}) \times \text{wt(kg)}}{72 \times \text{Crea serum [mg/dl]}}
\]

PLEASE NOTE: These formulas have not been confirmed in patients receiving repeated cycles of intensive chemotherapy OR in adolescents. Renal function may be overestimated by these methods.
10.6 Neurotoxicity

Vincristine
If severe peripheral neuropathy (vocal cord paralysis, inability to walk or perform usual motor functions) or ileus develops from vincristine, vincristine therapy should be stopped or withheld until the ileus resolves or the peripheral neuropathy improves. Restart vincristine at 50% dose \(0.75 \text{ mg/m}^2\) (0.025 mg/kg) and escalate to 75% of full dose \(1.125 \text{ mg/m}^2\) (0.0375 mg/kg), if tolerated, with the next cycle. If tolerated then resume full dose with the next cycle. If neuropathy recurs on escalating dose, return to previously tolerated dose once neuropathy has improved.

Oxaliplatin
If Posterior Reversible Encephalopathy Syndrome (PRES) is suspected, discontinue Oxaliplatin treatment.

10.7 Hepatotoxicity

In the setting of liver dysfunction and hyperbilirubinemia, dosing of all medications (study drugs and supportive care agents) should be carefully reviewed and institutional guidelines followed. The following recommendations should be considered:

Vincristine
If direct bilirubin is Grade 3 or 4 toxicity according to CTCAE prior to a cycle of chemotherapy, omit vincristine. If direct bilirubin is Grade 2 prior to chemotherapy, reduce vincristine dose by 50%. If vincristine is dose reduced because of direct hyperbilirubinemia, subsequent doses should be based on above criteria, i.e. if direct bilirubin returns to <Grade 2 toxicity, the full dose of vincristine is to be given.

Doxorubicin
If direct bilirubin is Grade 3 or 4 toxicity according to CTCAE prior to chemotherapy, omit doxorubicin. If direct bilirubin is Grade 2 prior to chemotherapy, reduce doxorubicin dose by 50%. If doxorubicin is dose reduced because of direct hyperbilirubinemia, subsequent doses should be based on above criteria, i.e. if direct bilirubin returns to <Grade 2 toxicity, the full dose of doxorubicin is to be given.

10.8 Mucositis

The dose of doxorubicin should be modified based on the following considerations:

- If the patient develops Grade 3 or 4 mucositis that resolves to <Grade 2 by Day 1 of the next cycle, no dose adjustments will be made in chemotherapy.
- If the patient develops Grade 3 or 4 mucositis that is NOT attributable to infectious etiology AND recovery to < Grade 2 does not occur by Day 1 of any cycle, reduce the dose of doxorubicin in the next cycle to 75% \((22.5 \text{ mg/m}^2 \text{ (0.75 mg/kg)})\). If subsequent chemotherapy is tolerated without the recurrence of Grade 3 or 4 toxicity, then resume full dose in the next cycle.
- If the patient has previously received the 75% dose and again has Grade 3 or 4 mucositis that is NOT attributable to infectious etiology AND recovery to < Grade 2 does not occur by Day 1 of the next cycle, further reduce the dose of doxorubicin in the next cycle to 50% original dose \((15 \text{ mg/m}^2 \text{ (0.5 mg/kg)})\). If chemotherapy at 50% original dose is then tolerated without the recurrence of Grade 3 or 4 toxicity, then escalate back to 75% \((22.5 \text{ mg/m}^2 \text{ (0.75 mg/kg)})\). If chemotherapy at 75% is then tolerated without the recurrence of Grade 3 or 4 toxicity, then resume full dose in the next cycle.
- If the patient experiences Grade 3 or 4 toxicity with the 50% dose reduction, the doxorubicin should be omitted from subsequent cycles.

11. ASSESSMENTS

The following are the recommended assessments and monitoring before and during treatment. Further monitoring can be performed according to institutional guidance.

All study related procedures must be carried out at the trial site. The results must be recorded on the CRF as required, and the reports from the other hospitals must be available for source data verification.
Time points for the biology and toxicity sampling have been aligned in order to minimise invasiveness and reduce the volume of dead space blood that is removed from the patient. Investigators must seek advice from the Coordinating Sponsor if there is a concern regarding the volume of study related blood loss for a particular patient.

11.1 Patient Assessments at Screening

Table 14 Screening Assessments

<table>
<thead>
<tr>
<th>PROTOCOL ACTIVITY</th>
<th>PRIOR TO TRIAL ENTRY</th>
<th>PRIOR TO TREATMENT ALLOCATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Informed consent</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Medical History</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Physical exam, including blood pressure, weight, height and surface area</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Performance status</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Cardiology assessment(^1)</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>LABORATORY TESTS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Haematology, including Hb, WBC, differential cell count, neutrophils, lymphocytes, platelets</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Biochemistry, including sodium, potassium, calcium, urea, creatinine, total protein, albumin, bilirubin, ALP, GGT, LDH, ALT/AST, ammonia</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Coagulation (INR and APTT)</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Hepatitis B and C serology</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>AFP</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Pregnancy test (if applicable)</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>RADIOLOGICAL ASSESSMENTS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tumour evaluation CT/MRI</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Metastatic evaluation: CT</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>PRETEXT staging</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>SAMPLING(^2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tumour tissue sample for Biology</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Non-tumour tissue sample for Biology</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Blood sample for Biology</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Blood sample for Toxicity sampling</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

\(^1\) A cardiology assessment by local institutional method is required for Intermediate (Group C) and High (Group D) Risk HB, and HCC (Group E and F) patients.

\(^2\) See Section 11.3 and Lab Manual for details. Tumour and non-tumour samples (representative HE slides; FFPE, fresh and snap-frozen specimens) are taken at surgery. Fresh samples may be taken if surgery is carried out following written informed consent. Blood samples for Biology are taken at diagnosis and just before surgery.
11.2 Patient Assessments During Treatment

Table 15 Group A2 Assessments

<table>
<thead>
<tr>
<th>PROTOCOL ACTIVITY</th>
<th>Prior to Cycle 1</th>
<th>Prior to Cycle 2</th>
<th>EOT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical exam, including blood pressure, weight, height and surface area</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>LABORATORY TESTS¹</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Haematology, including Hb, WBC, differential cell count, neutrophils, lymphocytes, platelets</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Biochemistry, including sodium, potassium, calcium, urea, creatinine, total protein, albumin, bilirubin, ALP, GGT, LDH, ALT/AST, ammonia</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>AFP</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>GFR</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>RADIOLOGICAL ASSESSMENTS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tumour evaluation CT/MRI</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>OTHER ASSESSMENTS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Audiogram</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>SAMPLING²</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blood sample for Toxicity</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Urine sample for Toxicity</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

¹Haematology should be performed weekly during trial treatment. Creatinine must be monitored carefully prior to each dose of cisplatin to monitor nephrotoxicity. If Creatinine is outside normal range for age, formal GFR should be estimated according to local practice.

²See Section 11.3 and Lab Manual for details. Blood samples for toxicity analysis are taken pre-infusion, mid-infusion, end-infusion and 2hr, 6hr, 24hr and 48hr post infusion of cisplatin. Urine samples for toxicity analysis are taken pre-infusion, 24hr and 48hr post infusion of cisplatin.
Table 16 Group B Assessments

<table>
<thead>
<tr>
<th>PROTOCOL ACTIVITY</th>
<th>Prior to Cycle 1</th>
<th>Prior to Cycle 2</th>
<th>Prior to Cycle 3</th>
<th>Prior to Cycle 4</th>
<th>Prior to Cycle 5</th>
<th>Prior to Cycle 6</th>
<th>EOT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical exam, including blood pressure, weight, height and surface area</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>LABORATORY TESTS(^1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Haematology, including Hb, WBC, differential cell count, neutrophils, lymphocytes, platelets</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Biochemistry, including sodium, potassium, calcium, urea, creatinine, total protein, albumin, bilirubin, ALP, GGT, LDH, ALT/AST, ammonia</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>AFP</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>GFR</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>RADIOLOGICAL ASSESSMENTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tumour evaluation CT/MRI</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OTHER ASSESSMENTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Audiogram</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>SAMPLING(^2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tumour tissue sample</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Non-tumour tissue sample</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Blood sample for Biology</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Blood sample for Toxicity</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urine sample for Toxicity</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^1\) Haematology should be performed weekly during trial treatment. Creatinine must be monitored carefully prior to each dose of cisplatin to monitor nephrotoxicity. If Creatinine is outside normal range for age, formal GFR should be estimated according to local practice.

\(^2\) See Section 11.3 and Lab Manual for details. Tumour and non-tumour samples (representative HE slides; FFPE, fresh and snap-frozen specimens) are taken at surgery, which may be after two, four or six cycles of treatment and at tumour recurrence (if appropriate). Blood samples for Biology are taken just before surgery, at EOT and at tumour recurrence (if appropriate). Blood samples for Toxicity are taken pre-infusion, mid-infusion, end-infusion and 2hr, 6hr, 24hr and 48hr post infusion of cisplatin, in two cycles of treatment. Urine samples for Toxicity are taken pre-infusion, 24hr and 48hr post infusion of cisplatin, in up to 3 cycles of treatment (including Cycle 1 and cycle immediately prior to surgery).
Table 17 Group C – SIOPEL-3HR Assessments

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical exam, including blood pressure, weight, height and surface area</td>
<td>X</td>
</tr>
<tr>
<td>LABORATORY TESTS¹</td>
<td></td>
</tr>
<tr>
<td>Haematology, including Hb, WBC, differential cell count, neutrophils, lymphocytes, platelets</td>
<td>X</td>
</tr>
<tr>
<td>Biochemistry, including sodium, potassium, calcium, urea, creatinine, total protein, albumin, bilirubin, ALP, GGT, LDH, ALT/AST, ammonia</td>
<td>X</td>
</tr>
<tr>
<td>AFP</td>
<td>X</td>
</tr>
<tr>
<td>GFR</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>RADIOLOGICAL ASSESSMENTS²</td>
<td></td>
</tr>
<tr>
<td>Tumour eval CT/MRI</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>OTHER ASSESSMENTS</td>
<td></td>
</tr>
<tr>
<td>Audiogram</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Cardiac assessment</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>SAMPLING³</td>
<td></td>
</tr>
<tr>
<td>Tumour tissue sample</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non tumour tissue sample</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blood sample for Biology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blood sample for Toxicity</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urine sample for Toxicity</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

¹ Haematology should be performed weekly during trial treatment. Creatinine must be monitored carefully prior to each dose of cisplatin to monitor nephrotoxicity. If Creatinine is outside normal range for age, formal GFR should be estimated according to local practice.

² Tumour evaluations prior to D57, pre surgery at D85 and D15 post-surgery.

³ Urine sample for Toxicity
See Section 11.3 and Lab Manual for details Tumour and non-tumour samples (representative HE slides; FFPE, fresh and snap-frozen specimens) are taken at surgery, which may be after two, four or six cycles of treatment and at tumour recurrence (if appropriate). Blood samples for Biology are taken just before surgery, at EOT and at tumour recurrence (if appropriate). Blood samples for Toxicity are taken pre-infusion, mid-infusion, end-infusion and 2hr, 6hr, 24hr and 48hr post infusion of cisplatin, in two cycles of treatment. Urine samples for Toxicity are taken pre-infusion, 24hr and 48hr post infusion of cisplatin, in up to 3 cycles of treatment (including Cycle 1 and cycle immediately prior to surgery).
Table 18 Group C C5VD Assessments

<table>
<thead>
<tr>
<th>PROTOCOL ACTIVITY</th>
<th>Prior to Cycle 1 (D1)</th>
<th>Prior to Cycle 2 (D22)</th>
<th>Prior to Cycle 3 (D43)</th>
<th>Prior to Cycle 4 (D64)</th>
<th>Prior to Cycle 5 (D1 Post Op)</th>
<th>Prior to Cycle 6 (D22 Post Op)</th>
<th>EOT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical exam, including blood pressure, weight, height and surface area</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>LABORATORY TESTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Haematology, including Hb, WBC, differential cell count, neutrophils, lymphocytes, platelets</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Biochemistry, including sodium, potassium, calcium, urea, creatinine, total protein, albumin, bilirubin, ALP, GGT, LDH, ALT/AST, ammonia</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>AFP</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>GFR</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>RADIOLOGICAL ASSESSMENTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tumour evaluation CT/MRI</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>OTHER ASSESSMENTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Audiogram</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Cardiology assessment</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>SAMPLING</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tumour tissue sample</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Non tumour tissue sample</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blood sample for Biology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blood sample for Toxicity</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urine sample for Toxicity</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 Haematology should be performed weekly during trial treatment. Creatinine must be monitored carefully prior to each dose of cisplatin to monitor nephrotoxicity. If Creatinine is outside normal range for age, formal GFR should be estimated according to local practice.

2 See Section 11.3 and Lab Manual for details. Tumour and non-tumour samples (representative HE slides; FFPE, fresh and snap-frozen specimens) are taken at surgery, which may be after two, four or six cycles of treatment and at tumour recurrence (if appropriate). Blood samples for Biology are taken just before surgery, at EOT and at tumour recurrence (if appropriate). Blood samples for Toxicity are taken pre-infusion, mid-infusion, end-infusion and 2hr, 6hr, 24hr and 48hr post infusion of cisplatin, in two cycles of treatment. Urine samples for Toxicity are taken pre-infusion, 24hr and 48hr post infusion of cisplatin, in up to 3 cycles of treatment (including Cycle 1 and cycle immediately prior to surgery).
<table>
<thead>
<tr>
<th>PROTOCOL ACTIVITY</th>
<th>Prior to Cycle 1</th>
<th>Prior to Cycle 2</th>
<th>Prior to Cycle 3</th>
<th>Prior to Cycle 4</th>
<th>Prior to Cycle 5</th>
<th>Prior to Cycle 6</th>
<th>EOT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical exam, including blood pressure, weight, height and surface area</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>LABORATORY TESTS(^1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Haematology, including Hb, WBC, differential cell count, neutrophils, lymphocytes, platelets</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Biochemistry, including sodium, potassium, calcium, urea, creatinine, total protein, albumin, bilirubin, ALP, GGT, LDH, ALT/AST, ammonia</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>AFP</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>GFR</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>RADIOLOGICAL ASSESSMENTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tumour evaluation CT/MRI</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>OTHER ASSESSMENTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Audiogram</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAMPLING(^2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tumour tissue sample</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Non tumour tissue sample</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blood sample for Biology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blood sample for Toxicity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Urine sample for Toxicity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

\(^{1}\)Haematology should be performed weekly during trial treatment. Creatinine must be monitored carefully prior to each dose of cisplatin to monitor nephrotoxicity. If Creatinine is outside normal range for age, formal GFR should be estimated according to local practice.

\(^{2}\)See Section 11.3 and Lab Manual for details. Tumour and non-tumour samples (representative HE slides; FFPE, fresh and snap-frozen specimens) are taken at surgery, which may be after two, four or six cycles of treatment and at tumour recurrence (if appropriate). Blood samples for Biology are taken just before surgery, at EOT and at tumour recurrence (if appropriate). Blood samples for Toxicity are taken pre-infusion, mid-infusion, end-infusion and 2hr, 6hr, 24hr and 48hr post infusion of cisplatin, in two cycles of treatment. Urine samples for Toxicity are taken pre-infusion, 24hr and 48hr post infusion of cisplatin, in up to 3 cycles of treatment (including Cycle 1 and cycle immediately prior to surgery)
Table 20 Group D Assessments

<table>
<thead>
<tr>
<th>PROTOCOL ACTIVITY</th>
<th>Prior to Block A1</th>
<th>Prior to Block A2</th>
<th>Prior to Block A3</th>
<th>Prior to Surgery</th>
<th>Prior to each Cycle</th>
<th>EOT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical exam, including blood pressure, weight, height and surface area</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>LABORATORY TESTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Haematology, including Hb, WBC, differential cell count, neutrophils, lymphocytes, platelets</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Biochemistry, including sodium, potassium, calcium, urea, creatinine, total protein, albumin, bilirubin, ALP, GGT, LDH, ALT/AST, ammonia</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AFP</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>GFR</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RADIOLOGICAL ASSESSMENTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tumour evaluation CT/MRI</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Metastatic evaluation CT chest</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>OTHER ASSESSMENTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Audiogram</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Cardiology assessment</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>SAMPLING</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tumour tissue sample</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Non tumour tissue sample</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Blood sample for Biology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Blood sample for Toxicity</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urine sample for Toxicity</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Biochemistry must be performed weekly during induction blocks. Haematology should be performed weekly during trial treatment. Creatinine must be monitored carefully prior to each dose of cisplatin to monitor nephrotoxicity. If Creatinine is outside normal range for age, formal GFR should be estimated according to local practice.

2. Tumour/metastatic evaluations after each induction block

3. See Section 11.3 and Lab Manual for details. Tumour and non-tumour samples (representative HE slides, FFPE, fresh and snap-frozen specimens) are taken at surgery, which may be after two, four or six cycles of treatment and at tumour recurrence (if appropriate). Blood samples for Biology are taken just before surgery, at EOT and at tumour recurrence (if appropriate). Blood samples for Toxicity are taken pre-infusion, mid-infusion, end-infusion and 2hr, 6hr, 24hr and 48hr post infusion of cisplatin, in two cycles of treatment. Urine samples for Toxicity are taken pre-infusion, 24hr and 48hr post infusion of cisplatin, in up to 3 cycles of treatment (including Cycle 1 and cycle immediately prior to surgery).
Table 21 Group E2 Assessments

<table>
<thead>
<tr>
<th>PROTOCOL ACTIVITY</th>
<th>Prior to Cycle 1</th>
<th>Prior to Cycle 2</th>
<th>Prior to Cycle 3</th>
<th>Prior to Cycle 4</th>
<th>EOT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical exam, including blood pressure, weight, height and surface area</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>LABORATORY TESTS¹</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Haematology, including Hb, WBC, differential cell count, neutrophils, lymphocytes, platelets</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Biochemistry, including sodium, potassium, calcium, urea, creatinine, total protein, albumin, bilirubin, ALP, GGT, LDH, ALT/AST, ammonia</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>AFP</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>GFR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RADIOLOGICAL ASSESSMENTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tumour evaluation CT/MRI</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>OTHER ASSESSMENTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Audiogram</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cardiology assessment</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>SAMPLING²</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blood sample for Biology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blood sample for Toxicity</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urine sample for Toxicity</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

¹Haematology should be performed weekly during trial treatment. Creatinine must be monitored carefully prior to each dose of cisplatin to monitor nephrotoxicity. If Creatinine is outside normal range for age, formal GFR should be estimated according to local practice.

²See Section 11.3 and Lab Manual for details. Blood samples for Biology are taken just before surgery, at EOT and at tumour recurrence (if appropriate). Blood samples for Toxicity are taken pre-infusion, mid-infusion, end-infusion and 2hr, 6hr, 24hr and 48hr post infusion of cisplatin, in two cycles of treatment. Urine samples for Toxicity are taken pre-infusion, 24hr and 48hr post infusion of cisplatin, in up to 3 cycles of treatment (including Cycle 1).
Table 22 Group F– PLADO Assessments

<table>
<thead>
<tr>
<th>PROTOCOL ACTIVITY</th>
<th>Prior to Cycle 1</th>
<th>Prior to Cycle 2</th>
<th>Prior to Cycles 3-6</th>
<th>Post Cycle 3 / EOT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical exam, including blood pressure, weight, height and surface area</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>LABORATORY TESTS¹</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Haematology, including Hb, WBC, differential cell count, neutrophils, lymphocytes, platelets</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Biochemistry, including sodium, potassium, calcium, urea, creatinine, total protein, albumin, bilirubin, ALP, GGT, LDH, ALT/AST, ammonia</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>AFP</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>GFR</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>RADIOLOGICAL ASSESSMENTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tumour evaluation CT/MRI</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>OTHER ASSESSMENTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Audiogram</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cardiology assessment</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECG</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAMPLING²</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tumour tissue sample</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Non tumour tissue sample</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Blood sample for Biology</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Blood sample for Toxicity</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urine sample for Toxicity</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

¹Haematology should be performed weekly during trial treatment. Creatinine must be monitored carefully prior to each dose of cisplatin to monitor nephrotoxicity. If Creatinine is outside normal range for age, formal GFR should be estimated according to local practice.

² See Section 11.3 and Lab Manual for details. Tumour samples are taken at surgery, if appropriate. Blood samples for Biology are taken just before surgery and at EOT. Blood samples for Toxicity are taken pre-infusion, mid-infusion, end-infusion and 2hr, 6hr, 24hr and 48hr post infusion of cisplatin, in two cycles of treatment. Urine samples for toxicity analysis are taken pre-infusion, 24hr and 48hr post infusion of cisplatin, in up to 3 cycles of treatment (including Cycle 1 and cycle immediately prior to surgery)
Table 23 Group F- PLADO/GEMOX Assessments

<table>
<thead>
<tr>
<th>PROTOCOL ACTIVITY</th>
<th>Prior to Cycle 1</th>
<th>Prior to Cycle 2</th>
<th>Prior to Cycles 3-7</th>
<th>Prior to Cycle 4 / 8</th>
<th>Post Cycle 4 / EOT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical exam, including blood pressure, weight, height and surface area</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>LABORATORY TESTS¹</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Haematology, including Hb, WBC, differential cell count, neutrophils, lymphocytes, platelets</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Biochemistry, including sodium, potassium, calcium, urea, creatinine, total protein, albumin, bilirubin, ALP, GGT, LDH, ALT/AST, ammonia</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>AFP</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>GFR</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RADIOLOGICAL ASSESSMENTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tumour evaluation CT/MRI</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>OTHER ASSESSMENTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Audiogram</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Cardiology assessment</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>ECG</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>SAMPLING²</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tumour tissue sample</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Non tumour tissue sample</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blood for Biology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Blood for Toxicity</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urine for Toxicity</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

¹Haematology should be performed weekly during trial treatment. Creatinine must be monitored carefully prior to each dose of cisplatin to monitor nephrotoxicity. If Creatinine is outside normal range for age, formal GFR should be estimated according to local practice.

² See Section 11.3 and Lab Manual for details. Tumour samples are taken at surgery, if appropriate. Blood samples for Biology are taken just before surgery and at EOT. Blood samples for Toxicity are taken pre-infusion, mid-infusion, end-infusion and 2hr, 6hr, 24hr and 48hr post infusion of cisplatin, in two cycles of treatment. Urine samples for toxicity analysis are taken pre-infusion, 24hr and 48hr post infusion of cisplatin, in up to 3 cycles of treatment (including Cycle 1 and cycle immediately prior to surgery)
11.3 Biological Studies

11.3.1 Scientific Aims

The PHITT trial offers a unique opportunity to build a bridge between clinical and biological research through collaboration in validating diagnostic and prognostic biomarkers as well as decipher and increase the molecular knowledge of childhood liver cancer. To reach this, in parallel to the enrolment and treatment of paediatric patients with liver cancer within the PHITT trial, a large scale European biorepository of clinical and pathological-annotated biological samples from these patients will be created. This biorepository, named Childhood Liver Cancer Network (CLCN) collection, will include patient-derived xenografts and primary cell cultures and it is established to be the basis of future improvements of the treatment of these patients by facilitating translational investigation towards a more personalized medicine.

Within the European branch of the PHITT trial, the procedures and storage sites of biological samples are coordinated by Germans Trias i Pujol Research Institute (IGTP) in Badalona (Spain) and the Institute of Neuropathology at University Hospital of Bonn (Germany). These two centralized biorepositories are intended to function as the hubs of a large network of hospitals and multidisciplinary research groups.

To reach the secondary aims of the trial, it is crucial to collect a maximum number of samples at highest quality from the majority of patients. To assure this, a PHITT Laboratory Manual and CLCN kits providing the material for sampling will be distributed at the time of PHITT initiation to the reference centres. Please refer to most recent version of PHITT Laboratory Manual before taking samples for protocol instructions, shipment addresses, contact details, etc.

The initial biological analyses of the ChiLTERN project that will be performed on the samples of the CLCN collection are listed in Table 24. Also, the research groups involved in this research are listed in Table 25. In addition to the studies mentioned in this section, further research on collected biological samples will be carry out depending on initial findings, general advances in experimental techniques and our increasing knowledge of cancer. Importantly, the future aim of the CLCN collection is to be accessible to external non-profit research groups studying childhood liver cancer and in this way, continue to facilitate and contribute to research of this rare disease. In all circumstances, the conducted research will be evaluated by SIOPEL and CLCN Scientific Committees. Ongoing, planned and future studies using these samples will be always conducted according to legal and ethical rules, and their procedures will be subject to prior approval by the Research Ethics Committee at the national levels.

Table 24 Main studies planned for samples of the CLCN collection within the ChiLTERN project.

All obtained findings from these studies will be stored in the PHITT database and linked with the clinical data.

<table>
<thead>
<tr>
<th>Study</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biomarker assessment</td>
<td>• In Europe, a panel of diagnostic and prognostic biomarkers based on the literature and recent research activities of European researchers will be analysed in HB and HCC patients.</td>
</tr>
<tr>
<td></td>
<td>• Samples: tissue and plasma samples at diagnosis and surgery</td>
</tr>
<tr>
<td></td>
<td>• Biomarker panels: gene mutations (CTNNB1, NFE2L2, TERT by Sanger sequencing), gene hypermethylations (IGFBP3, RASSF1A by pyrosequencing), copy number variations (+2q24, +8q, +20 and -4q by OncoScan molecular inversion probe assays) as well as gene (16-gene signature, TERT, NQO1 by quantitative PCR) and protein (3-protein signature by immunohistochemistry and DKK1 by ELISA) expression signatures. This panel will be updated based on scientific publications that appear throughout the project and new biomarkers detected by our discovery approach. Validated biomarkers independently found in EU will be also cross-validated using biological samples from the independent US and Japan cohorts and vice versa.</td>
</tr>
</tbody>
</table>
Exploratory studies

- Tumour Study of samples of patients stratified into the very high-risk group (low AFP, metastasis, ≥ 8 years of age), samples from recurrent tumours or paediatric
- Samples: tissue samples at diagnosis and surgery
- Techniques: Tumour and non-tumour samples will be analysed by using the latest omics and next-generation sequencing technologies. The three main techniques to study the genome, epigenome and proteome are summarized below. This does not exclude the use of new developed techniques that could appear during the ongoing study. If comparable newer platforms will become available, they will be used instead.

Next-generation sequencing

- High-depth DNA and RNA sequencing will be performed with the Illumina HiSeq 2500 system in tumour and corresponding non-tumour DNA and RNA samples. Matched germline DNA sequencing will also be done.
- Expected results: identification of somatic alterations or damaging germline variants, which may be causally linked to the tumour. Also, transcriptome sequencing will provide a detailed gene expression profile useful for molecular tumour classification as well as allow the identification of new gene fusions and alternative splicing events.

Methylation array analysis

- DNA methylation alterations will be studied using the Illumina Infinium Human Methylation 450k Beadchip array.
- Expected results: identification of prognostic or predictive epigenetic markers.

Proteomic profiling

- Protein profiling and the study of post-transductional changes (i.e. phosphoproteome) will be studied by LC-MS label-free analysis (nanoAcquity-LTQ Orbitrap XL mass spectrometer, Thermo-Electron and/or in nanoAcquity-Synapt G2Si, Waters). Progenesis QI-MS software (Nonlinear Dynamics, Waters) will be used for the label-free differential protein expression analysis.
- Expected results: identification of post-transductional changes of proteins that could be used as new targets for therapy.

Patient-derived xenograft (PDX) & Primary cell culture establishment

- PDX establishment: After surgery, fresh tumour fragments in culture media (MACS Tissue Storage Solution from Miltenyi or XenTech's transport medium) will be shipped by overnight courier to XenTech in order to be grafted within the 24h post-surgery. Tumour samples will be grafted in athymic nude mice according to Nicolle et al [44].
- Primary cell culture establishment: Primary cell cultures will be isolated from PDXs but also from fresh samples directly obtained from surgical pieces in the IGTP.

Table 25: Key centres, pathologists, clinic and basic researchers involved in the research studies (detailed in Table 27) with samples of the CLCN collection.

<table>
<thead>
<tr>
<th>Institution (CLCN repository)</th>
<th>Destination</th>
<th>Contact details</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGTP (CLCN repository)</td>
<td>Germans Trias i Pujol Research Institute</td>
<td>Carolina Armengol + 34 670799690 + 34 934978688 carmengol@igtp.cat</td>
<td>Germans Trias i Pujol Research Institute (IGTP) Ctra. de Can Ruti. Camí de les Escoles, s/n 08916 Badalona SPAIN</td>
</tr>
<tr>
<td>UKB (CLCN repository)</td>
<td>University Hospital of Bonn Institute of Neuropathology</td>
<td>Torsten Pietsch +49 22828716602 torsten.pietsch@ukb.uni-bonn.de</td>
<td>Sigmund-Freud-Strasse 25 53105 Bonn Germany</td>
</tr>
<tr>
<td>XenTECH (PDX)</td>
<td>XenTECH</td>
<td>Stefano Cairo +33 160878982</td>
<td>rue Pierre Fontaine 4</td>
</tr>
</tbody>
</table>
11.3.2 Pathology and Biology Sampling

Informed Consent must be obtained before any trial specific tissue is collected from the patient. Tissue may be collected as part of standard practice, part of generic tissue consent for research or using the PHITT trial consent. Please refer to the PHITT Laboratory Manual before taking samples.

Blood, tumour tissue and non-tumour tissue samples will be collected at diagnosis and at the point of surgery. Additional blood samples will also be taken pre-surgery and at end of treatment.

Table 26 Samples taken at Diagnosis

<table>
<thead>
<tr>
<th>Sample</th>
<th>Preparation</th>
<th>Storage</th>
<th>Sent to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tumour tissue sample</td>
<td>Representative HE stained slides*</td>
<td>RT</td>
<td>National Pathology Review Centre</td>
</tr>
<tr>
<td></td>
<td>Representative tumour FFPE block*</td>
<td>RT</td>
<td>National Pathology Review Centre</td>
</tr>
<tr>
<td></td>
<td>Remaining FFPE blocks</td>
<td>RT</td>
<td>CLCN repository</td>
</tr>
<tr>
<td></td>
<td>Snap-frozen sample (1-4 cores**)</td>
<td>-80°C</td>
<td>CLCN repository</td>
</tr>
<tr>
<td></td>
<td>Unstained slides</td>
<td>RT</td>
<td>CLCN repository</td>
</tr>
<tr>
<td>Blood sample (3-6mL)</td>
<td>Few drops (Whatman paper)</td>
<td>RT</td>
<td>CLCN repository</td>
</tr>
<tr>
<td></td>
<td>Plasma</td>
<td>-80°C</td>
<td>CLCN repository</td>
</tr>
<tr>
<td></td>
<td>Peripheral Blood lymphocytes</td>
<td>-80°C</td>
<td>CLCN repository</td>
</tr>
</tbody>
</table>

*NB – For Group A patients, these samples must be sent within 14 days for real-time central pathology review.

**One third of the diagnostic material should be reserved for biology

Table 27 Samples taken just before surgery

<table>
<thead>
<tr>
<th>Sample</th>
<th>Preparation</th>
<th>Storage</th>
<th>Sent to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood sample (3-6mL)</td>
<td>Plasma</td>
<td>-80°C</td>
<td>CLCN repository</td>
</tr>
<tr>
<td></td>
<td>Peripheral Blood lymphocytes</td>
<td>-80°C</td>
<td>CLCN repository</td>
</tr>
</tbody>
</table>
Table 28 Samples taken at surgery of primary tumour

<table>
<thead>
<tr>
<th>Sample*</th>
<th>Preparation</th>
<th>Storage</th>
<th>Sent to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tumour tissue sample</td>
<td>A set of slides of a one representative slice</td>
<td>RT</td>
<td>National Pathology Review Centre</td>
</tr>
<tr>
<td></td>
<td>Representative tumour FFPE block</td>
<td>RT</td>
<td>National Pathology Review Centre</td>
</tr>
<tr>
<td></td>
<td>Remaining FFPE blocks</td>
<td>RT</td>
<td>CLCN repository</td>
</tr>
<tr>
<td></td>
<td>Snap-frozen sample</td>
<td>-80°C</td>
<td>CLCN repository</td>
</tr>
<tr>
<td></td>
<td>Fresh sample in culture media</td>
<td>RT</td>
<td>CLCN repository (1piece) & XenTECH (1 piece)</td>
</tr>
<tr>
<td>Non-tumour tissue sample</td>
<td>Relevant HE Slides</td>
<td>RT</td>
<td>National Pathology Review Centre</td>
</tr>
<tr>
<td></td>
<td>Snap-frozen sample</td>
<td>-80°C</td>
<td>CLCN repository</td>
</tr>
<tr>
<td></td>
<td>Representative and remaining FFPE blocks</td>
<td>RT</td>
<td>CLCN repository</td>
</tr>
<tr>
<td></td>
<td>Fresh sample in culture media</td>
<td>RT</td>
<td>CLCN repository</td>
</tr>
</tbody>
</table>

* sample processing within the 30 minutes after specimen removal

Table 29 Samples taken at End of Treatment

<table>
<thead>
<tr>
<th>Sample</th>
<th>Preparation</th>
<th>Storage</th>
<th>Sent to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood sample (3-6mL)</td>
<td>Plasma</td>
<td>-80°C</td>
<td>CLCN repository</td>
</tr>
<tr>
<td></td>
<td>Peripheral Blood lymphocytes</td>
<td>-80°C</td>
<td>CLCN repository</td>
</tr>
</tbody>
</table>

Table 30 Samples taken at surgery of recurrent tumour

<table>
<thead>
<tr>
<th>Sample*</th>
<th>Preparation</th>
<th>Storage</th>
<th>Sent to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood sample (3-6mL)</td>
<td>Plasma</td>
<td>-80°C</td>
<td>CLCN repository</td>
</tr>
<tr>
<td></td>
<td>Peripheral Blood lymphocytes</td>
<td>-80°C</td>
<td>CLCN repository</td>
</tr>
<tr>
<td>Tumour tissue sample</td>
<td>A set of slides of a one representative slice</td>
<td>RT</td>
<td>National Pathology Review Centre</td>
</tr>
<tr>
<td></td>
<td>Representative tumour FFPE block</td>
<td>RT</td>
<td>National Pathology Review Centre</td>
</tr>
<tr>
<td></td>
<td>Remaining FFPE blocks</td>
<td>RT</td>
<td>CLCN repository</td>
</tr>
<tr>
<td></td>
<td>Snap-frozen sample</td>
<td>-80°C</td>
<td>CLCN repository</td>
</tr>
<tr>
<td></td>
<td>Fresh sample in culture media</td>
<td>RT</td>
<td>CLCN repository & XenTECH</td>
</tr>
<tr>
<td>Non-tumour tissue sample</td>
<td>Relevant HE Slides</td>
<td>RT</td>
<td>National Pathology Review Centre</td>
</tr>
<tr>
<td></td>
<td>Snap-frozen sample</td>
<td>-80°C</td>
<td>CLCN repository</td>
</tr>
<tr>
<td></td>
<td>Representative and remaining FFPE blocks</td>
<td>RT</td>
<td>CLCN repository</td>
</tr>
<tr>
<td></td>
<td>Fresh sample in culture media</td>
<td>RT</td>
<td>CLCN repository</td>
</tr>
</tbody>
</table>

*sample processing within the 30 minutes after specimen removal
11.3.3 Toxicity Sampling

Blood and urine samples will be collected from all patients receiving cisplatin therapy to collect data on the relationships between cisplatin pharmacokinetics, pharmacogenetics and biomarkers of toxicity and the clinical efficacy and toxicity in patients.

- Blood for a Pharmacokinetics study will be taken pre-infusion, mid-infusion, end-infusion and 2hr, 6hr, 24hr and 48hr post end-infusion on 2 cycles of cisplatin treatment (preferably first and last cycles of treatment).
- Blood for a Cardiac toxicity biomarker study will be taken at screening/baseline and at times of Cardiac assessment.
- Blood for a Pharmacogenetics study will be taken at screening/baseline.
- Urine for a Kidney toxicity biomarker study will be taken pre-infusion, 24hr and 48hr post end-infusion on up to 3 cycles of cisplatin treatment (including 1st cycle and cycle immediately prior to surgery).

Table 31 Samples taken Pre-infusion (Day 1)

<table>
<thead>
<tr>
<th>Sample</th>
<th>Preparation</th>
<th>Reason for sample</th>
<th>Storage</th>
<th>Sent to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood sample (3mL Heparin tube)</td>
<td>Plasma</td>
<td>Pharmacokinetics study</td>
<td>-20°C or -80°C</td>
<td>Newcastle</td>
</tr>
<tr>
<td></td>
<td>Plasma ultrafiltrate</td>
<td>Pharmacokinetics study</td>
<td>-20°C or -80°C</td>
<td>Newcastle</td>
</tr>
<tr>
<td>Blood sample (5mL EDTA tube)</td>
<td>Plasma</td>
<td>Cardiac toxicity biomarker study</td>
<td>-20°C or -80°C</td>
<td>Newcastle</td>
</tr>
<tr>
<td>Blood sample (5mL whole blood)</td>
<td>N/A</td>
<td>Pharmacogenetics study</td>
<td>-20°C or -80°C</td>
<td>Newcastle</td>
</tr>
<tr>
<td>Urine sample</td>
<td>N/A</td>
<td>Kidney toxicity biomarker study</td>
<td>-80°C</td>
<td>Newcastle</td>
</tr>
</tbody>
</table>

*Repeat sample at each Cardiac assessment

Table 32 Samples taken Mid-infusion, End-infusion, 2hr post infusion and 6hr post infusion (Day 1)

<table>
<thead>
<tr>
<th>Sample</th>
<th>Preparation</th>
<th>Reason for sample</th>
<th>Storage</th>
<th>Sent to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood sample (3mL Heparin tube)</td>
<td>Plasma</td>
<td>Pharmacokinetics study</td>
<td>-20°C or -80°C</td>
<td>Newcastle</td>
</tr>
<tr>
<td></td>
<td>Plasma ultrafiltrate</td>
<td>Pharmacokinetics study</td>
<td>-20°C or -80°C</td>
<td>Newcastle</td>
</tr>
</tbody>
</table>

Table 33 Samples taken at 24hr post infusion (Day 2)

<table>
<thead>
<tr>
<th>Sample</th>
<th>Preparation</th>
<th>Reason for sample</th>
<th>Storage</th>
<th>Sent to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood sample (3mL Heparin tube)</td>
<td>Plasma</td>
<td>Pharmacokinetics study</td>
<td>-20°C or -80°C</td>
<td>Newcastle</td>
</tr>
<tr>
<td></td>
<td>Plasma ultrafiltrate</td>
<td>Pharmacokinetics study</td>
<td>-20°C or -80°C</td>
<td>Newcastle</td>
</tr>
<tr>
<td>Urine sample</td>
<td>N/A</td>
<td>Kidney toxicity biomarker study</td>
<td>-80°C</td>
<td>Newcastle</td>
</tr>
</tbody>
</table>
* Blood sample for PK study need only be taken on 2 cycles (preferably first and last cycles of treatment)
** Urine sample should be taken on up to 3 cycles, including Cycle 1 and cycle immediately prior to surgery

Table 34 Samples taken at 48hr post infusion (Day 4)

<table>
<thead>
<tr>
<th>Sample</th>
<th>Preparation</th>
<th>Reason for sample</th>
<th>Storage</th>
<th>Sent to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood sample (3mL Heparin tube)*</td>
<td>Plasma</td>
<td>Pharmacokinetics study</td>
<td>-20°C or -80°C</td>
<td>Newcastle</td>
</tr>
<tr>
<td></td>
<td>Plasma ultrafiltrate</td>
<td>Pharmacokinetics study</td>
<td>-20°C or -80°C</td>
<td>Newcastle</td>
</tr>
<tr>
<td>Urine sample**</td>
<td>N/A</td>
<td>Kidney toxicity biomarker study</td>
<td>-80°C</td>
<td>Newcastle</td>
</tr>
</tbody>
</table>

* Blood sample for PK study need only be taken on 2 cycles (preferably first and last cycles of treatment)
** Urine sample should be taken on up to 3 cycles, including Cycle 1 and cycle immediately prior to surgery

11.4 Surgical Review Study

Within the PHITT trial a surgical review study will be included evaluating surgical treatment of POST-TEXT III and IV HB. Data obtained from this study will be the basis for assessing the optimal surgical approach for these complex tumours. The aim of this investigation is an evidence based contribution to the formulation of surgical recommendations concerning extended liver resection or liver transplantation.

The surgical review investigation within the PHITT trial will be coordinated by the Department of Paediatric Surgery and Paediatric Urology at the University Hospital Tuebingen (Germany). This study is sponsored by the ChiLTERN project within the Horizon 2020 grant from the European Commission. The main objectives of the study are:

- to evaluate a surgical planning tool for an impact on decision making processes in POST-TEXT III and IV HB;
- to offer imaging results from this tool to treating centres and operating physicians;
- to assess data from local surgical reviews alongside surgical and oncological outcomes of patients in order to produce guidelines for extended hepatic resection or liver transplantation.

To reach the formulated aims it is necessary to centrally collect cross section imaging data from PRETEXT III and IV HB patients at diagnosis as well as before surgery. The preoperative imaging data will be processed for 3-dimensional reconstruction and virtual simulation for resection. Resulting interactive imaging data will also be supplied to the treating centre and operating physicians to be included in the patient surgical planning process.

All necessary information concerning this study will be sent to the NCC for distribution to local centres at the time of PHITT initiation. With regard to quality control, the preoperative cross section imaging studies (MRI or CT scan) should be performed in a standardized fashion. The suggested parameters for preoperative MRI and CT scan are listed in Appendix 9.

In addition, for an unproblematic course of events regarding the surgical review study, it is recommended to contact the main investigators (steven.warmann@med.uni-tuebingen.de and/or joerg.fuchs@med.uni-tuebingen.de) as early as possible in any case of newly diagnosed PRETEXT III and IV HB.
12. TREATMENT COMPLIANCE

Compliance for IMP treatment will be monitored by each NCC as specified in the International Monitoring Plan, Pharmacy Manual and by the CRF. The prescription and usage of the IMPs is recorded on the Treatment CRF. Local accountability processes must allow retrospective verification.

13. SUPPORTIVE TREATMENT

Cardioprotective agents
Dexrazoxane use for patients treated with doxorubicin is permitted at the discretion of the treating centre. Its use should be consistent where possible.

Venous Access
A permanent indwelling venous access device is recommended. This is not a trial requirement.

Antiemetics
Patients should be treated with appropriate antiemetics according to local practice.

Neutropenia (Neutropenic fever)
Antibiotic coverage is at the discretion of the Investigator using broad spectrum cover. Use of G-CSF is at the discretion of the treating physician.

Blood products
Blood and platelet transfusions and the use of filtering and irradiating blood products may be done according to local practice. G-CSF may be used according to local practice.

Pneumocystis carinii infection prophylaxis
Pneumocystis carinii prophylaxis according to local guidance.

Hydration
Sufficient hydration (2-3L/m²/day) with appropriate electrolyte supplementation must be provided during chemotherapy. The application of diuretics may become necessary in case of oedema or hypertension. Avoid nephrotoxic drugs.

14. CONCOMITANT MEDICATION

The use of specific drugs which may interact with the trial IMPs must be avoided. These are listed below.

All patient groups:
- Sodium Thiosulfate (STS) cannot be used. Please contact the Trial team.
- Any homeopathic or other agent delivered with anti-tumour intent is prohibited.
- Enrolment on a simultaneous clinical trial which administers an IMP is prohibited.

Group F patients:
The following drugs must not be taken by patients receiving Sorafenib:
- CYP3A inducers (e.g. St John's Wort, dexamethasone, phenytoin, carbamazepine, rifampin, rifabutin, phenobarbital) due to their effect on QC prolongation
- CYP3A inhibitors and CYP Isoform substrates (e.g. ketoconazole)
- CYP2B6 and CYP2C8 substrates (e.g. paclitaxel)
- Docetaxel
- Fluorouracil/Leucovorin
- Drugs which inhibit UGT1A1 and UGT1A9 metabolism (e.g. irinotecan)
- Drugs which interfere with GI flora (e.g. neomycin)

Concomitant medications will be recorded in the CRF as part of Serious Adverse Event (SAE) reporting only. Where concomitant medications are given in relation to standard clinical management, this information will not be recorded in the CRF.

15. PATIENT FOLLOW UP

Patients who received treatment must have follow-up assessments following trial entry for a minimum of 2 years. Patients who did not receive treatment will be followed up for disease progression and death only, for a minimum of 2 years.

3 monthly Follow up visits should be carried out as per local practice and include:
- Physical examination at each visit
-AFP assessment
- Tumour assessment (CT or MRI)

Annual Follow up visits should be carried out as per local practice and include:
- Audiology assessment
- Cardiology assessment (if abnormal at EOT)
- Creatinine clearance (if <80ml/min/1.73m² at EOT)

In case of tumour recurrence during follow-up, blood and tissue samples from these patients should be collected (see section 11.3 and refer to most recent version of PHITT Laboratory Manual before taking samples).

All patients will be followed up for progression and death until all trial objectives have been met.

16. TREATMENT DISCONTINUATION AND PATIENT WITHDRAWAL

16.1 Treatment Discontinuation

If a patient stops PHITT protocol treatment, the reason should be recorded in the patient’s medical records and be reported on the appropriate CRF whether it is due to either the patient’s, parent/legal guardian’s or clinician’s decision. Reasons for stopping protocol treatment may include, but are not limited to:
- The patient and/or patient’s parent/guardian does not wish to continue with further trial treatment
- Unacceptable toxicity
- Disease progression whilst on therapy

PHITT will be analysed on an intention-to-treat (ITT) basis and all patients who stop randomised trial treatment will remain in the trial for follow-up unless the patient and/or parent/legal guardian explicitly withdraws consent for data collection (see Section 16.2).
16.2 Withdrawal of consent to data collection
The patient and/or parent/legal guardian may withdraw consent at any time during the study. For the purposes of this trial, withdrawal is defined as:
- The patient would like to withdraw from trial medication and is not willing to be followed up for the purposes of the trial at any further visits (i.e. only data collected prior to the withdrawal of consent can be used in the trial analysis).

The details of withdrawal should be clearly documented in the patient's medical records. A Withdrawal of Consent Form should be completed. A patient's wishes with respect to their data must be respected.

16.3 Loss to follow-up
If a patient is lost to follow-up, every effort should be made to contact the patient's primary physician (GP in the UK) to obtain information on the patient's status. Similarly, if a patient's care is transferred to another clinician, the applicable NCC should be informed and follow-up information be obtained.

17. ADVERSE EVENT REPORTING
The collection and reporting of Adverse Events (AEs) will be in accordance with EU Directive for Clinical Trials 2001/20/EC and the Detailed Guidance on the Collection, Verification and Presentation of Adverse Events/Reaction Reports Arising From Clinical Trials of Medicinal Products For Human Use (‘CT-3’). Definitions of different types of AE are listed in Appendix 2.

The Investigator should assess the seriousness and causality (relatedness) of all AEs experienced by the patient (this should be documented in the patient's medical records - source data) with reference to the Summary of Product Characteristics.

17.1 Reporting Requirements

17.1.1 Adverse Events and Adverse Reactions
For definitions of Adverse Event (AEs) and Adverse Reactions (ARs) refer to Appendix 2.

As the safety profiles of the IMPs used in this trial are well characterised, only selected ARs experienced during treatment will be reported. The highest grade of AR experienced during each cycle of chemotherapy will be recorded only.

For patients on non-randomised arms (Groups A, B2, D1 and E) Only chemotherapy-related cardiac, nephro- and oto- toxicity will be recorded.

17.1.2 Serious Adverse Events
Investigators should report AEs that meet the definition of an SAE (see Appendix 2 for definition) and that are not excluded from the reporting process as described below.

17.1.2.1 Events that do not require reporting on a Serious Adverse Event Form
The following events should not be reported on an SAE Form:
- Hospitalisation's for:
 - Protocol defined treatment
 - Pre-planned elective procedures unless the condition worsens
 - Treatment for the symptoms of /progression of the patient’s cancer

Progression or death as a result of the patient’s cancer, as this information is captured elsewhere on the CRFs.
Hospitalisations for the following events should be reported on an Expected SAR Form rather than an SAE Form (unless the condition is life threatening or proves fatal):

- Neutropenia,
- Fever
- Febrile neutropenia
- Infections
- Haematological toxicity:
 - Hemoglobin increased
 - Lymphocyte count decreased
 - Neutrophil count decreased
 - Platelet count decreased
 - White blood cell decreased
- Gut toxicity:
 - Diarrhea
 - Nausea
 - Vomiting
 - Mucositis

Expected SAR Forms should be completed by sites as soon as possible once the event has resolved and sent via post or fax to the UK Coordinating Centre for data entry.

17.1.2.2 Monitoring pregnancies for potential Serious Adverse Events

It is important to monitor the outcome of pregnancies of patients in order to provide SAE data on congenital anomalies or birth defects.

In the event that a patient or their partner becomes pregnant during the SAE reporting period, complete a Pregnancy Notification Form (providing the patient’s details). If it is the patient who is pregnant, outcome data should be provided on a follow-up Pregnancy Notification Form. Where the patient’s partner is pregnant, consent must first be obtained and the patient should be given a Release of Medical Information Form to give to their partner. If the partner is happy to provide information on the outcome of their pregnancy, they should sign the Release of Medical Information Form. Once consent has been obtained, details of the outcome of the pregnancy should be provided on a follow-up Pregnancy Notification Form. If appropriate, an SAE Form should also be completed as detailed below.

17.1.3 Reporting period

Details of all ARs and SAEs (except those listed above) will be documented and reported from the date of commencement of protocol defined treatment until 30 days after the administration of the last treatment.

17.1.4 Post study SARs and SUSARs:

SAEs that are judged to be at least possibly related to the IMP(s) must still be reported in an expedited manner irrespective of how long after IMP administration the reaction occurred.
17.2 Reporting Procedure

17.2.1 Site

17.2.1.1 Adverse Reactions

ARs experienced during treatment should be recorded on the CRF. ARs will be reviewed using the
Common Terminology Criteria for Adverse Events (CTCAE), version 4 (see Appendix 3). Any ARs
experienced by the patient but not included in the CTCAE should be graded by an Investigator and
recorded on the AR Form using a scale of (1) mild, (2) moderate or (3) severe. For each
sign/symptom, the highest grade observed since the last visit should be recorded.

17.2.1.2 Serious Adverse Events

For more detailed instructions on SAE reporting, refer to the SAE Form Completion Guidelines
contained in the ISF.

AEs defined as serious and which require reporting as an SAE (excluding events listed in Section
17.1.2.1 above) should be reported on an SAE Form. When completing the form, the Investigator will
be asked to define the causality and the severity of the AE which should be documented using the
CTCAE version 4.

On becoming aware that a patient has experienced an SAE, the Investigator (or delegate) must
complete, date and sign an SAE Form. The form should be faxed together with a SAE Fax Cover
Sheet to the CRCTU, using one of the numbers listed below as soon as possible and no later than 24 hours after first becoming aware of the event:

To report an SAE, fax the SAE Form with an SAE Fax Cover Sheet to:

+44 (0) 121 414 9520 or +44 (0) 121 414 3700

On receipt, the UK Coordinating Centre will allocate each SAE a unique reference number. This
number will be transcribed onto the SAE Fax Cover Sheet which will then be faxed back to the site as
proof of receipt. If confirmation of receipt is not received within 1 working day, please contact the UK
Coordinating Centre. The SAE reference number should be quoted on all correspondence and follow-
up reports regarding the SAE. The SAE Fax Cover Sheet completed by the UK Coordinating Centre
should be filed with the SAE Form in the ISF.

For SAE Forms completed by someone other than the Investigator, the Investigator will be required to
countersign the original SAE Form to confirm agreement with the causality and severity assessments.
The form should then be returned to the UK Coordinating Centre in the post and a copy kept in the
ISF.

Investigators should also report SAEs within their own institution in accordance with local practice.

17.2.1.3 Provision of follow-up information

Patients should be followed up until resolution or stabilisation of the event. Follow-up information
should be provided on a new SAE Form (refer to the SAE Form Completion Guidelines for further
information).

17.2.2 UK Coordinating Centre

On receipt of an SAE Form, seriousness and causality will be determined independently by a Clinical
Coordinator. An SAE judged by the Investigator or Clinical Coordinator to have a causal relationship
with the trial medication will be regarded as a Serious Adverse Reaction (SAR). The Clinical
Coordinator will also assess all SARs for expectedness. If the event meets the definition of a SAR that
is unexpected (i.e. not defined in the Reference Safety Information), it will be classified as a
Suspected Unexpected Serious Adverse Reaction (SUSAR).
17.2.3 Reporting to the Competent Authority and Research Ethics Committee

17.2.3.1 Suspected Unexpected Serious Adverse Reactions
The UK Coordinating Centre will report individual events categorised as SUSARs to the EudraVigilance Clinical Trial Module (EVCTM) and were required to the Competent Authority in all countries in which the trial has received regulatory approval. Events will be reported in accordance within the regulatory specified time frame:

- Fatal or life threatening SUSARs within a maximum of 7 days with a detailed follow-up report within an additional 8 days
- All other SUSARs within a maximum of 15 days

The UK Coordinating Centre will provide SUSARs reports to the NCCs who will report SUSARs to the relevant REC, within the time frame specified above, and Principal Investigators within their country. The UK Coordinating Centre will assume responsibility for reporting to these parties in the UK.

17.2.3.2 Development Safety Update Report
The UK Coordinating Centre will include details of all SAEs, SARs (including SUSARs) in a Development Safety Update Report (DSUR) produced annually from the date of the first Clinical Trial Authorisation received for the trial to the submission of the End of Trial Declaration. NCCs will be provided with a copy of this report and where contractually required to do so will forward this report to the relevant Competent Authority and REC.

17.2.3.3 Adverse Reactions
Details of all ARs will be reported to Competent Authorities on request.

17.2.3.4 Other safety issues identified during the course of the trial
The NCCs will notify the relevant Competent Authority and REC immediately if a significant safety issue is identified during the course of the trial. The UK Coordinating Centre will notify the MHRA and UK REC.

17.2.4 Investigators
Details of all SUSARs and any other safety issue which arises during the course of the trial will be reported to Principal Investigators. A copy of any such correspondence should be filed in the ISF.

17.2.5 Data Monitoring Committee
The independent Data Monitoring Committee (DMC) will review all SAEs.

18. DATA HANDLING AND RECORD KEEPING

18.1 Data Collection
This trial will use an eRDE system provided by CINECA which will be used for completion of the CRF. Access to the eRDE system will be granted to individuals via the UK Coordinating Centre.

SAE reporting will be entirely paper-based throughout the course of the trial.

If the eRDE system is unavailable for an extended period of time a paper based CRF should be completed and forms returned to the applicable NCC for data entry.
The CRF must be completed by an Investigator or an authorised member of the site research team (as delegated on the site signature and delegation log, or country specific equivalent) within the timeframe listed in the eRDE.

Entries on the paper CRF should be made in ballpoint pen, in blue or black ink, and must be legible. Any errors should be crossed out with a single stroke, the correction inserted and the change initialled and dated. If it is not obvious why a change has been made, an explanation should be written next to the change.

Data reported on each form should be consistent with the source data or the discrepancies should be explained. If information is not known, this must be indicated on the form. Missing and ambiguous data will be queried. All sections are to be completed before being submitted.

In all cases it remains the responsibility of the Investigator to ensure that the CRF has been completed correctly and that the data are accurate.

The CRF may be amended by the UK Coordinating Centre, as appropriate, throughout the duration of the trial. Whilst this will not constitute a protocol amendment, new versions of the form must be implemented by participating sites immediately on receipt, and acknowledgement of receipt and implementation should be sent to the applicable NCC if required.

18.2 Archiving

It is the responsibility of the Principal Investigator to ensure all essential trial documentation and source records (e.g. signed ICFs, ISF, Pharmacy Files, patients’ medical records, copies of SAE forms, etc.) at their site are securely retained for at least 25 years after the end of the trial. NCCs will notify sites when documentation can be destroyed.

19. QUALITY MANAGEMENT

19.1 Site Set-up and Initiation

Sites will be set up and initiated in accordance by the applicable NCC. All sites will be required to sign a clinical study site agreement (or country specific equivalent) prior to participation. In addition, all participating Investigators will be asked to supply a current CV. All members of the site research team will also be required to sign the site signature and delegation log (or country specific equivalent).

Prior to commencing recruitment, all sites will undergo a process of initiation. It is anticipated that key members of the site research team will be required to attend either a meeting or a teleconference covering aspects of the trial design, protocol procedures, AE reporting, collection and reporting of data and record keeping.

It is anticipated that sites will be provided with an ISF and a Pharmacy File containing the documentation and instructions required for the conduct of the trial by the NCC. The applicable NCC must be informed immediately of any change in the site research team.

19.2 On-site Monitoring

Monitoring will be carried out as required following a risk assessment and as documented in the International Monitoring Plan.

Investigators will allow the PHITT trial research staff access to source documents as requested.
19.3 Central Monitoring

If allowed by country specific legislation/guidance and if the patient and/or parent/legal guardian has given explicit consent, sites are requested to send in copies of signed ICFs to the applicable NCC for in-house review.

Trial research staff will be in regular contact with the site research team to check on progress and address any queries that they may have. Trial research staff will check incoming data for compliance with the protocol, data consistency, missing data and timing. Sites will be sent requests for missing data or clarification of inconsistencies or discrepancies.

Sites may be suspended from further recruitment in the event of serious and persistent non-compliance with the protocol and/or Good Clinical Practice (GCP), and/or poor recruitment. Any major problems identified during monitoring may be reported to the Trial Management Group (TMG), Trial Steering Committee (TSC) and the relevant regulatory bodies. This includes reporting serious breaches of GCP and/or the trial protocol.

19.4 Audit and Inspection

The Investigator will permit trial-related monitoring, audits, ethical review, and regulatory inspections at their site, providing direct access to source data/documents.

Sites are also requested to notify the applicable NCC of any inspections by the relevant Competent Authority.

NCCs will notify the UK Coordinating Centre of any significant audit findings.

19.5 Notification of Serious Breaches

Country specific legislation may require the NCC to notify the Competent Authority and Ethics Committee in writing, within 7 days of becoming aware of any serious breach of:

- The conditions and principles of GCP in connection with the trial
- The protocol relating to the trial

A “serious breach” is a breach which is likely to affect to a significant degree:

- The safety or physical or mental integrity of the patients in the trial
- The scientific value of the trial

Sites are therefore requested to notify the applicable NCC of a suspected trial-related serious breach of GCP and/or the trial protocol. Where the applicable NCC is investigating whether or not a serious breach has occurred sites are also requested to cooperate with the applicable NCC in providing sufficient information to report the breach to the relevant regulatory authorities where required and in undertaking any corrective and/or preventive action.

Please note: persistent failure by sites to provide prompt and accurate information, particularly with regard to the reporting of SAEs, can be considered a serious breach.

The NCC will notify the UK Coordinating Centre of any serious breaches.

20. END OF TRIAL DEFINITION

The trial will remain open until the date of the last patient's last visit. The applicable NCC will notify the relevant Competent Authority and Ethics Committee that the trial has ended at the appropriate time and will provide them with a summary of the clinical trial report within 12 months of the end of trial.
21. STATISTICAL CONSIDERATIONS

21.1 Trial Design

The study is viewed in the context of a long-term strategy for improving outcome in HB and HCC and it is important to investigate promising approaches in randomised trials. In some cases it is difficult to come up with plausible sample sizes and the cohort sizes that are available would be considered inadequate based on conventional criteria for Randomised Controlled Trials (RCTs) (e.g. alpha=0.05, beta=0.2). In the context of low-incidence paediatric cancer, frequent smaller trials will likely produce larger long-term gains in treatment efficacy [45]. Hence the study is driven by the objective of accumulating as much information as possible on the relative efficacies of the treatments using unbiased methods. Therefore alternative methods are considered which include Bayesian methods – based on probability distributions. This design will provide flexibility to make conclusions from all patients randomised without fixing the exact number which will be important given the recruitment from several collaborative groups. As a general principle, the approach that any randomised evidence is better than none is taken. A possible conclusion of the randomisations might be that there remains uncertainty as to which treatment is better and, therefore, the some of the randomisations could continue in the next trial.

21.1.1 Outcome Measures

The trial outcome measures are defined in Section 2.2. Table 1 specifies the outcome measures for each group.

21.2 Sample Size Considerations

The sample size for each treatment groups was chosen based on the available number of patients across the three collaborative groups. The trial will aim to recruit the total number of patients across the three collaborative groups as specified in Table 1 for the main analysis, but the flexible design ensures that this analysis will be applicable for any number of patients.

For the non-randomised groups, decision guidelines are planned to be used for safety monitoring purposes (treatment strategy may be reconsidered if outcomes reach an undesirable level; the design of the guidelines was chosen based on a modified A'hern design and, if a certain number of failure events are observed, the treatment for a group may be reconsidered because of insufficient disease control, detailed in Table 35); there will be no comparison with historical data. The aim of data collection for these groups is for biological studies.

Table 35 Decision Guidelines

<table>
<thead>
<tr>
<th>Group</th>
<th>Baseline long term EFS (%)</th>
<th>Decision guideline at any time</th>
</tr>
</thead>
<tbody>
<tr>
<td>A - Very Low Risk HB Patients</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Well Differentiated foetal Histology</td>
<td>92.5</td>
<td>4 or more failure events occur</td>
</tr>
<tr>
<td>Not well differentiated foetal</td>
<td>85</td>
<td>21 or more failure events occur</td>
</tr>
<tr>
<td>B - Low Risk HB Patients</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not resected after 2 courses</td>
<td>proportion of patients achieving resection is 90</td>
<td>15 or more patients fail to get resected</td>
</tr>
<tr>
<td>D - High Risk HB Patients</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Good responders</td>
<td>87.5</td>
<td>11 or more failure events occur</td>
</tr>
<tr>
<td>E - Resected HCC Patients</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fibrolamellar HCC</td>
<td>Not applicable</td>
<td>No guideline</td>
</tr>
<tr>
<td>de novo non-fibrolamellar HCC</td>
<td>82.5</td>
<td>4 or more failure events occur</td>
</tr>
</tbody>
</table>
For the randomised questions, specific decision guidelines were chosen based on the primary outcome in order to assist treatment selection decisions at the main analysis. In general, a therapy may be chosen, based on the posterior probability at the main analysis if \(\Pr(\text{true therapy signal is } < h^*, \text{ given observed data}) > p^* \), where \(h^* \) is the upper limit and \(p^* \) is the cut-off of the lower level of certainty (i.e. if there is a high chance that the true signal in one of the therapy arms is greater than some clinically relevant value). The design parameters \(h^* \) and \(p^* \) were calibrated on the basis of the operating characteristics of the study design (and their clinical interpretation) and were examined in simulation studies. The guidelines for randomised questions are detailed in Table 36. Where a Bayesian probability based approach is adopted for survival outcomes, a Normal-Normal conjugate analysis for log Hazard Ratio (HR) was used to assess the design characteristics. The normal approximation for the log HR with variance \(4/n \) is assumed, where \(n=\text{total number of events in both arms} \) [46]. Where a probability based approach is adopted for the response primary outcome, a Beta-Binomial conjugate analysis was used to assess the design characteristics. Non-informative priors were used. The posterior distributions were derived and from these distribution for the risk ratio (RR). Operating characteristics were calculated by simulating data for 10,000 trials under different possible underlying truths and decision guidelines. The results are given in the Statistical Analysis Plan.

Table 36 Decision guidelines for randomised questions

<table>
<thead>
<tr>
<th>Group</th>
<th>Baseline 3-year EFS (%)</th>
<th>Decision guideline at the final analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>B - Low Risk HB Patients</td>
<td>Resected after 2 courses</td>
<td>87.5</td>
</tr>
<tr>
<td>C - Intermediate Risk HB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patients</td>
<td>Poor responders</td>
<td>60</td>
</tr>
<tr>
<td>D - High Risk HB Patients</td>
<td></td>
<td>40% response rate</td>
</tr>
<tr>
<td>F – Unresected /metastatic HCC Patients</td>
<td>Not resected</td>
<td></td>
</tr>
</tbody>
</table>

21.3 Analysis of Outcome Measures

Non-randomised groups will be summarised using descriptive statistics as these have no comparative questions. For the randomised questions, the main analysis based on the primary outcome measure will result in a posterior probability distribution. The analysis will use non-informative priors. A decision on which therapy will be taken as the standard will be made at this stage, taking into account secondary outcome measures. To assist this decision, probabilities will be established on which therapy is truly better than the other by pre-specified clinically relevant value (i.e. decision guidelines specified in Section 20.2). The analyses of all outcome measures will be performed according to the intention to treat principle. Further details of the planned statistical analysis are detailed in a separate Statistical Analysis Plan.

21.4 Planned Subgroup Analyses

Exploratory subgroup analyses will be performed for known prognostic factors. Given the well-known dangers of subgroup analyses, all analyses will be treated as hypothesis-generating.
21.5 Planned Interim Analysis

For all randomised groups, data will be analysed and reported at least annually to an independent DMC. The DMC may also recommend stopping or modifying the trial (or part of the trial) if any issues are identified which might compromise patient safety or for clear evidence of efficacy or because of poor accrual or data quality. Recruitment will not be stopped whilst the data is assessed by the DMC.

21.6 Planned Final Analyses

The first main analysis will be performed two years after recruitment of the last patient.

21.7 Stopping Guidelines

The independent DMC will review the safety data and efficacy at regular intervals and will make recommendations to the TSC if they have concerns regarding any of the randomised cohorts.
22. TRIAL ORGANISATIONAL STRUCTURE

22.1 Coordinating Sponsor

The University of Birmingham is the Coordinating Sponsor. In addition, the University of Birmingham (UK Coordinating Centre) will undertake the responsibilities of NCC in the UK. NCCs are responsible for the conduct of the trial within their own country.

22.2 National Coordinating Centres (NCCs)

The Coordinating Sponsor has delegated the set-up, management and analysis of the trial to the UK Coordinating Centre. The role of the UK Coordinating Centre is assumed by the CRCTU, University of Birmingham. The trial will be set-up, managed and analysed in the UK in accordance with CRCTU standard policy and procedures.

Each NCC (see the introductory pages for the list) will manage the trial in accordance with the trial protocol and their standard policy and procedures.

22.3 Trial Management Group

The TMG is composed of the Chief Investigator, co-investigators, representatives from each NCC, biology and pathology committee and the trial team at the CRCTU. The TMG is responsible for the day-to-day running and management of the trial and will meet by teleconference or in person as required.

22.4 Trial Steering Committee

The TSC will provide oversight of the trial and provide advice through its independent chair. The TSC will include members of the ChiLTERN External Advisory Board, a patient representative and a sponsor’s representative. The Chief Investigator will report to the TSC on behalf of the TMG. The TSC will assume responsibility for the oversight of the trial on behalf of the Coordinating Sponsor. The TSC will meet or hold teleconferences at least once a year during the treatment period, or more often if required.
22.5 Data Monitoring Committee

Analyses will be supplied in confidence by the trial statistician to an independent DMC. In the light of these analyses, and the results of any other relevant trials, the DMC will advise the TSC if, in their view, the randomised comparisons in the PHITT trial have provided both (i) “proof beyond reasonable doubt” that for all, or some specific types, of patient, any of the randomised treatments are clearly indicated or contraindicated in terms of a net difference in a major endpoint; and (ii) evidence that might be reasonably expected to influence materially the patient management of many clinicians who are already aware of the main results of any other trials. The DMC may also consider recommending stopping or modifying the trial, or part of the trial, if: any issues are identified which might compromise patient safety; the recruitment rate or data quality are unacceptable. The TSC can then decide whether to modify the trial, or to seek additional data. Unless this happens, the TSC, the TMG, the Principal investigators, the study participants and all trial staff (except those who provide the confidential analyses to the DMC) will remain blind to the interim results of the randomised questions.

The DMC will operate in accordance with a trial specific charter based upon the template created by the Damocles Group. The DMC will meet annually during the recruitment and treatment phases of the trial. Additional meetings may be called if recruitment is much faster than anticipated and the DMC may, at their discretion, request to meet more frequently or continue to meet following completion of recruitment. An emergency meeting may also be convened if a safety issue is identified.

The DMC will report to the TSC via the TMG. The TMG will also convey the findings of the DMC to the Coordinating Sponsor and funders, where applicable.

22.6 Finance

This is an investigator-initiated and investigator-led trial funded by European Union’s Horizon 2020 research and innovation programme. No payment will be made to investigators, patients or other third parties from this funding.

22.7 NIHR CRN Portfolio

The PHITT trial is a National Institute for Health Research (NIHR) Clinical Research Network (CRN) Portfolio study (UK).

23. ETHICAL CONSIDERATIONS

The accepted basis for the conduct of clinical trials in humans is founded on the protection of human rights and the dignity of human beings with regard to the application of biology and medicine, and requires compliance with the principles of GCP and detailed guidelines in line with those principles (Directive 2001/20/EC (2) and Directive 2005/28/EC (1)).

GCP is a set of internationally recognised ethical and scientific quality requirements which must be observed for designing, conducting, recording and reporting clinical trials that involve the participation of human subjects. Compliance with GCP provides assurance that the rights, safety and well-being of trial subjects are protected, and that the results of the clinical trials are credible (Article 1 (2) of Directive 2001/20/EC).

The NCCs and Investigators shall consider all relevant guidance with respect to commencing and conducting a clinical trial (Article 4 of Directive 2005/28/EC).

The conduct of the trial shall be based on the following international ethical and statutory sources:

- The WMA Declaration of Helsinki - Ethical Principles for Medical Research Involving Human Subjects
- If the region has adopted the Convention for the Protection of Human Rights and Dignity of the Human Being with regard to the Application of Biology and Medicine: Convention on Human Rights and Biomedicine (CETS No.: 164)
medicinal products for human use (Official Journal L21, 01/05/2001 P. 0034 – 0044) and detailed guidance.

- **Directive 2005/28/EC** of 8 April 2005 laying down principles and detailed guidelines for good clinical practice as regards investigational medicinal products for human use, as well as the requirements for authorisation of the manufacturing or importation of such products (Official Journal L 91, 09/04/2005 P. 0013 – 0019).

- Scientific guidelines relating to the quality, safety and efficacy of medicinal products for human use, as agreed upon by the CHMP and published by the Agency, as well as the other pharmaceutical Community guidelines published by the Commission in the different volumes of the rules governing medicinal products in the European Community (Directive 2005/28/EC (9)).

It is the responsibility of the Principal Investigator to ensure that all subsequent amendments gain the necessary local site specific approval. This does not affect the individual clinicians’ responsibility to take immediate action if thought necessary to protect the health and interest of individual patients.
24. CONFIDENTIALITY AND DATA PROTECTION

Personal data recorded on all documents will be regarded as strictly confidential and will be handled and stored in accordance with the relevant data protection legislation in the member state. Patients will be identified using only their unique trial number in correspondence between the applicable NCC and participating sites. However, if local regulation/guidance permits patients are asked to give permission for the applicable NCC to be sent a copy of their signed ICF which will not be anonymised. This will be used to perform in-house monitoring of the consent process.

The Investigator must maintain documents not for submission to the applicable NCC (e.g. patient identification logs) in strict confidence. In the case of specific issues and/or queries from the regulatory authorities, it will be necessary to have access to the complete trial records, provided that patient confidentiality is protected.

The NCCs will maintain the confidentiality of all patients’ data and will not disclose information by which patients may be identified to any third party other than those directly involved in the treatment of the patient and organisations for which the patient has given explicit consent for data transfer. Representatives of the PHITT trial research team may be required to have access to patients’ medical records for quality assurance purposes but patients should be reassured that their confidentiality will be respected at all times.

25. INSURANCE AND INDEMNITY

University of Birmingham employees are indemnified by the University insurers for negligent harm caused by the design or co-ordination of the clinical trials they undertake whilst in the University's employment.

The University of Birmingham cannot offer indemnity for non-negligent harm. The University of Birmingham is independent of any pharmaceutical company and, as such, it is not covered by the Association of the British Pharmaceutical Industry (ABPI) guidelines for patient compensation.

26. PUBLICATION POLICY

Results of this trial will be submitted for publication in peer reviewed journals. The manuscripts will be prepared by the TMG and authorship will be determined by mutual agreement.

The first publication of the results of this study shall be made as a joint multi-centre publication under the lead of the UK Coordinating Centre at the CRCTU and the Chief Investigator. Any secondary publications and presentations prepared by Investigators must be reviewed and approved by the TMG. Manuscripts must be submitted to the TMG in a timely fashion and in advance of being submitted for publication to allow time for review, resolution of any outstanding issues and approval. Authors must acknowledge that the trial was performed with the support of the University of Birmingham and where applicable other NCCs. Intellectual property rights will be addressed in the agreements between the NCCs and the clinical study site agreement (or country specific equivalent) between the NCCs and sites.

Individual NCCs will be allowed to publish their efficacy results. However, the publication of efficacy results from the whole trial will precede efficacy result publications of individual countries, unless the TMG decides otherwise.
27. REFERENCE LIST

20. Murawski, M.e.a., Hepatocellular Carcinoma in Children: Does Modified Platinum- and Doxorubicin-Based Chemotherapy Increase Tumor Resectability and Change Outcome? Lessons Learned From the SIOPEL 2 and 3 Studies. Journal of Clinical Oncology Vol. 34. 2016. 1050-1056.

42. Review, S.e.a.U.

APPENDIX 1 - WMA DECLARATION OF HELSINKI

Please refer to:
www.wma.net/en/20activities/10ethics/10helsinki/index.html
APPENDIX 2 - DEFINITION OF ADVERSE EVENTS

Adverse Event (AE)
Any untoward medical occurrence in a patient or clinical trial subject administered a medicinal product and which does not necessarily have a causal relationship with this treatment.
Comment:
An AE can therefore be any unfavourable and unintended sign (including abnormal laboratory findings), symptom or disease temporally associated with the use of an investigational medicinal product, whether or not related to the investigational medicinal product.

Adverse Reaction (AR)
All untoward and unintended responses to an IMP related to any dose administered.
Comment:
An AE judged by either the reporting Investigator or Sponsor as having causal relationship to the IMP qualifies as an AR. The expression reasonable causal relationship means to convey in general that there is evidence or argument to suggest a causal relationship.

Serious Adverse Event (SAE)
Any untoward medical occurrence or effect that at any dose:
- Results in death
- Is life-threatening*
- Requires hospitalisation** or prolongation of existing inpatients' hospitalisation
- Results in persistent or significant disability or incapacity
- Is a congenital anomaly/birth defect
- Or is otherwise considered medically significant by the Investigator***
Comments:
The term severe is often used to describe the intensity (severity) of a specific event. This is not the same as serious, which is based on patients/event outcome or action criteria.
* Life threatening in the definition of an SAE refers to an event in which the patient was at risk of death at the time of the event; it does not refer to an event that hypothetically might have caused death if it were more severe.
**Hospitalisation is defined as an unplanned, formal inpatient admission, even if the hospitalisation is a precautionary measure for continued observation. Thus, hospitalisation for protocol treatment (e.g. line insertion), elective procedures (unless brought forward because of worsening symptoms), or for social reasons (e.g. respite care), are not regarded as an SAE.
*** Medical judgment should be exercised in deciding whether an AE is serious in other situations. Important AEs that are not immediately life threatening or do not result in death or hospitalisation but may jeopardise the subject or may require intervention to prevent one of the other outcomes listed in the definition above, should be considered serious.

Serious Adverse Reaction (SAR)
An Adverse Reaction which also meets the definition of a Serious Adverse Event.

Suspected Unexpected Serious Adverse Reaction (SUSAR)
A SAR that is unexpected i.e. the nature, or severity of the event is not consistent with the Reference Safety Information.
A SUSAR should meet the definition of an AR, UAR and SAR.

Unexpected Adverse Reaction (UAR)
An AR, the nature or severity of which is not consistent with the Reference Safety Information.
When the outcome of an AR is not consistent with the Reference Safety Information the AR should be considered unexpected.
APPENDIX 3 – COMMON TERMINOLOGY CRITERIA FOR ADVERSE EVENTS

Toxicities will be recorded according to the Common Terminology Criteria for Adverse Events (CTCAE), version 4. The full CTCAE document is available on the National Cancer Institute (NCI) website, the following address was correct when this version of the protocol was approved:

APPENDIX 4 – PRETEXT
(Aug 2016, Meyers updated based upon SIOPEL Barcelona discussions)

The PRETEXT system was initially designed by the International Childhood Liver Tumour Strategy Group (SIOPEL) for staging and risk stratification in liver tumours. The intention was to develop a system that could be used to describe tumour extent based upon radiographic imaging, before any therapy (Aronson 2005, Roebuck 2007, Meyers 2014). The PRETEXT Groups (I, II, III, and IV) have not changed over time. The group assignment is dependent upon an understanding of hepatic segmental anatomy and defines the number of contiguous tumour free sections. A POST-TEXT group assignment defines the number of contiguous tumour free sections after chemotherapy and before surgical resection. Unlike the group assignment, the PRETEXT annotation factors define caudate and extraparenchymal tumour involvement. Initially just V, P, E, M, these annotation factors have evolved over time and in the PHITT study will include V, P, E, F, R, C, N, M. Definitions are described in detail below.

Hepatic Segmental Anatomy

![Hepatic Segmental Anatomy Diagram](image-url)

Fig 1A. Exploded frontal view of the segmental anatomy of the liver. The umbilical portion of the left portal vein (LPV) separates the left medial section (LMS) from the left lateral section (LLS). Segment 1 is obscured in this view. Couinaud segments are denoted 1-8; Sections as left lateral, left medial, right anterior and right posterior. Hemiliver as either right or left.

The Brisbane nomenclature of segmental hepatic anatomy denotes a hierarchy of Hemi-Liver > Liver Sections > Couinaud segments. (Strasburg 2005) The eight Couinaud segments are grouped into four liver sections as follows: segments 2 and 3 (left lateral section), segments 4a and 4b (left medial section), segments 5 and 8 (right anterior section) and segments 6 and 7 (right posterior section). (Figure 1A). Caudate (segment 1) involvement when present is denoted as an annotation factor “C” discussed below. The traditional approach to radiological segmentation of the liver, based on the
paths of the hepatic veins, is an oversimplification. This is partly due to the variability of hepatic venous anatomy (Roebuck 2007). Although the plane of the right hepatic vein reliably separates the right posterior and right anterior sections, the left hepatic vein runs to the left of the boundary between the left lateral and medial sections, which is best defined by the plane of the fissure of the ligamentum teres and the umbilical portion of the left portal vein (Figure 1B).

Fig 1B. Transverse section of the liver showing the planes of the major venous structures used to determine the PRETEXT number. The hepatic (blue) and portal (purple) veins define the sections of the liver (Coiunaud numerals in parentheses). This schematic diagram shows how the right hepatic (RHV) and middle hepatic (MHV) veins indicate borders of the right posterior (RPS), right anterior (RAS), and left medial (LMS) sections. Note that the left portal vein (LPV) actually lies caudal to the confluence of the hepatic veins and is not seen in the same transverse section on imaging studies. The left hepatic vein (LHV) runs between segments 2 and 3 and is not used to determine the PRETEXT number.

PRETEXT/ POST-TEXT Groups (I, II, III, IV)

When the assessment is completed at diagnosis it is termed PRETEXT (pretreatment extent of tumour). When the assessment is completed after chemotherapy it is termed POST-TEXT (post-treatment extent of tumour). A summary diagram of PRETEXT, POST-TEXT, Groups, and Annotation Factors (V, P, E, F, R, C, N, M) is shown in (Figure 2).

PRETEXT I. Three contiguous tumour free sections. This group includes only a small proportion of tumours and only tumours localized to either the left lateral section or the right posterior section qualify as PRETEXT I.

PRETEXT II. Two contiguous tumour free sections. Most PRETEXT II tumours are limited to either the right lobe or the left lobe of the liver. Tumours confined to the left medial or right anterior sections are also PRETEXT II, as only two contiguous sections remain tumour free. Multifocal tumours involving only the left lateral and right posterior sections are classified as PRETEXT II; this pattern is very rare.
PRETEXT III. The unifocal tumours in this category spare only the left lateral or right posterior section, or both the left lateral and right posterior section. These tumours are relatively common. Care must be taken to distinguish between invasion and compression of the apparently uninvolved section of the liver, because risk stratification (and/or the need for liver transplantation) may depend on this point. When BOTH the left lateral and right posterior sections are tumour free, there is still only one contiguous section tumour free. Although recent advances in surgical technique permit resection of some of these central tumours by mesohepatectomy, without trisectionectomy, major vessel involvement is common and may require complete heptectomy and transplantation (Meyers 2014). Classification as PRETEXT III reflects the difficulty of these operations. Multifocal PRETEXT III tumours also spare only one contiguous section and are less common.

PRETEXT IV PRETEXT IV tumours involve all sections of the liver. These tumours are often multifocal. Alternatively, a very large solitary tumour can involve all four sections.

Figure 2. PRETEXT Groups (I, II, III, IV) and PRETEXT Annotation Factors (V,P,E,F,R,C,N,M)

PRETEXT Annotation Factors

The PRETEXT Annotation Factors have evolved over time with different definitions in different studies. They were introduced in SIOPEL 1 as V, P, E, and M. With definitions V ("involvement" of all three hepatic veins and/or retrohepatic IVC), P ("involvement" of main portal vein or both portal veins), E (contiguous extrahepatic spread, eg, diaphragm, stomach, colon, etc), and M (distant metastatic disease, usually lung). The SIOPEL 2005 revised PRETEXT system defined additional factors for multifocality (F), tumour rupture (was H, is now R), lymph node involvement (N), Caudate (C), ascites, and introduced suffixes to denote various levels of involvement for the hepatic and portal veins (Roebuck 2007). The SIOPEL versions of these annotation factors have been aimed at defining prognostic significance. In COG AHEP-0731, the annotation factors were modified and used to define study recommendations for the timing and extent of surgical resection. COG AHEP 0731 study identifies the proximity of venous involvement as Vneg, 0,1,2,3, and P neg,0,1,2,3, as increasingly severe involvement: Neg (>1 cm from vessel); O(within 1 cm of vessel); 1(touching but not distorting); 2 (distorsion, compression, effacement, invasion); 3 (intravascular thrombus). These levels of increasing severity of venous involvement are attached to the V (defined as all three hepatic veins and/or retrohepatic IVC) and P (defined as both left and right portal veins and/or portal bifurcation (Meyers 2014).
The PRETEXT annotation factors will become increasingly important in the PHITT trial, as recently the CHIC risk factor analysis showed that they possessed prognostic value in predicting outcome (Czauderna 2016). Analysis of the large international Children’s Hepatic tumour International Consortium (CHIC) database, showed that when one, or more, of the PRETEXT annotation factors, V, P, E, F, R, was positive, the chance of a good outcome was significantly reduced (HR 2.52, 95% CI 2.08-3.02) (Meyers in press). In the PHITT study the PRETEXT annotation factors significance will be further studied and validated. In this process the precise definitions of the annotation factors have again been meticulously delineated, This time to incorporate elements of both the COG and SIOPEL prior definitions, and to facilitate their study as prognostic factors.

Hepatic Vein, IVC, involvement, “V”. As shown in figure 3 variable levels of hepatic vein involvement will be tracked for their prognostic value as determined by central review. For the purposes of the treatment assignment as a VPEFR positive or negative tumour, a “Vpositive” tumour will be VC3 or VD3 and involve all three hepatic veins and or the retrohepatic IVC AND show either tumour thrombus or suspected tumour involvement of the vein (see Figure 3).

Hepatic Vein Involvement => V

<table>
<thead>
<tr>
<th>Extent of hepatic venous involvement*</th>
<th>One Hepatic Veins* = 1</th>
<th>Two Hepatic Veins* = 2</th>
<th>Three Hepatic Veins and/or IVC* = 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tumor distant (≥1 cm) from vein = A</td>
<td>VA1</td>
<td>VA2</td>
<td>VA3</td>
</tr>
<tr>
<td>Tumor <1cm of vein = B</td>
<td>VB1</td>
<td>VB2</td>
<td>VB3</td>
</tr>
<tr>
<td>Tumor involvement of vein is suspected** = C</td>
<td>VC1</td>
<td>VC2</td>
<td>VC3</td>
</tr>
<tr>
<td>Intravascular tumor thrombus = D</td>
<td>VD1</td>
<td>VD2</td>
<td>VD3</td>
</tr>
</tbody>
</table>

*Involvement of ‘Hepatic Vein’ must be the portion of the L/M/R vein between the three main vein confluence and the 1st major branch. If there are different levels of involvement in differentveins, go with the worst.

**Suspected on radiographic imaging => touching, distorted, obliterated, encased
Note...all data above collected on central review, however, enrolling institution only to report positive or negative based on the above definitions

Portal Vein involvement, “P”. Various levels of portal vein involvement are shown in Figure 4, Portal Vein Involvement => P. Patients with tumour more than one cm from of the main portal vein, its bifurcation, or either of its main branches will be coded as PA; within a centimetre as PB; vein involvement suspected as PC; and tumour thrombus as PD. Single right or left vein as 1, both right and left. Main or bifurcation as 2 and 3.
Contiguous Extrahepatic Tumour, “E”. The assessment of contiguous extrahepatic abdominal disease was one of the most confusing aspects of the original PRETEXT system, and clearly needed revision. Originally, there was a requirement for all extrahepatic abdominal spread of tumour (E+) to be proved by biopsy. Modern imaging techniques are capable, in principle, of identifying extrahepatic abdominal tumour extension in many forms. Extrahepatic tumour by direct spread or extension will be assumed when there is no radiographic visible plane between the affected structure and the tumour or when the normal structure is surrounded by enhancing tumour on three sides. Peritoneal nodules will be included in PHITT where it may be especially relevant to the patients with HCC. Nodules will be considered +E when there is one or more nodule measuring 1cm or greater or 2 or more nodules measuring 0.5cm or greater.

Tumour Multifocality “F” Tumour multifocality is defined as two or more discrete tumours with normal liver surrounding. The size of the largest nodule will be coded, and the total number of nodules coded.

Tumour rupture or intraperitoneal haemorrhage “R”. It is not uncommon for hepatoblastoma and hepatocellular carcinoma to present with tumour rupture. Since the opening of the SIOPEL 4 study in September 2004, tumour rupture has become a defining feature of high-risk hepatoblastoma in SIOPEL studies. The definitions have been further refined for the PHITT study as shown in Figure 5. A ruptured tumour must fulfill BOTH of the following criteria: 1. Free fluid with imaging characteristics of blood by internal complexity/septation, high density on CT (>4HU), and /or imaging characteristics of blood degradation products on MRI.; and 2) at least one or more of the following clinical findings of haemorrhage: HCT <25, HGB <7, blood pressure drop, blood transfusion required, abdominal pain with peritoneal signs. Alternatively, aspirated peritoneal fluid with contain tumour cells.
Caudate lobe tumours “C”. The caudate lobe can be resected with either the left or right hemi-liver. For this reason, segment 1 was not considered in the PRETEXT classification in the original system. Modern surgical techniques have made resection of segment 1 safer, but these operations remain difficult. Involvement of the caudate lobe is, therefore, a potential predictor of poor outcome. If any tumour is present in segment 1 on imaging at diagnosis, the patient will be coded as C, irrespective of the PRETEXT group (see above).

Lymph node metastases “N”. Because lymph node metastases are quite unusual in hepatoblastoma this has not been rigorously tracked in hepatoblastoma studies. The PHITT trial, however, will include HCC where lymph node involvement is more common and prognostically important. Because biopsy of equivocal lymph nodes inevitably carries some risk, biopsy is discouraged. Biopsy may, however, be required if there is significant nodal enlargement (for example short axis >15 mm) in a child with HCC who is a potential transplant candidate. Biopsy proof is not required, however, if the imaging abnormality is unequivocal. An arbitrary threshold short axis diameter of 15 mm is suggested for this purpose.

Distant metastases “M”. Patients with distant metastases at diagnosis are coded as M. In hepatoblastoma, these metastases are predominantly found in the lungs. Although the best imaging modality for the identification of lung metastases is currently CT, the defining characteristics of lung metastases in this context have not been specifically studied. It is believed, however, that factors favouring a diagnosis of metastasis include multiple lesions, a rounded, well-defined contour and a subpleural location. In most parts of the world, a single rounded lung lesion with a diameter of >5 mm in a child with a primary liver tumour is very likely to be a metastasis. As shown in Figure 6, to qualify for a radiographic diagnosis as a metastatic lesion there should be at least one or more non-calcified nodule much be greater than or equal to 1cm; or two or more noncalcified nodules greater than or equal to 0,5 cm; or any nodule confirmed by excisional biopsy/metastasectomy . Biopsy is not required for staging purposes, because it is uncommon for other lesions to mimic metastases in this clinical context. The protocols of the SIOP-EL studies recommend central radiological review if there is any doubt about the presence of lung metastases.

Other metastases are infrequently found at diagnosis in hepatoblastoma, but are more common in hepatocellular carcinoma. The imaging findings of brain metastases are usually characteristic, and biopsy is not required.
For non-lung distant metastasis, bone scintigraphy is recommended for staging in children with hepatocellular carcinoma, but not hepatoblastoma. Abnormal calcium metabolism is common in children with hepatoblastoma, and may cause abnormal uptake on bone scintigraphy, especially in the ribs whereas bone metastases are rare. Biopsy proof is therefore mandatory for suspected bone metastases in hepatoblastoma, unless the findings of cross-sectional imaging are characteristic and the patient is already in the high-risk category for some other reason, such as the presence of lung metastases.

Bone marrow biopsy is not recommended in children with hepatoblastoma, because bone marrow spread is rare. It is not known whether metastases at different sites have different prognostic implications. For statistical purposes, it is therefore recommended that one or more suffixes be added to M to indicate the major sites of metastasis: pulmonary (p), skeletal (s), central nervous system (c), bone marrow (m), and other sites (x). A child with lung, brain, and adrenal metastases would therefore be coded as M1cpx. Patients with no evidence of distant metastatic spread of tumour should be coded as M negative.
APPENDIX 5 –CHIC-HEPATOBLASTOMA STRATIFICATION

While the COG historically used a surgical based staging system in its trials INT - 0098 and P9645 this evolved into a hybrid risk stratification schema for its current trial, AHEP0731 (Table 2). The SIOPEL, GPOH, and JPLT research consortia have increasingly utilized the Pretreatment Extent of disease (PRETEXT) system for risk stratification. The PRETEXT group assignment (I, II, III, IV) is based on the number of hepatic sections involved by tumor at diagnosis. The group assignment is then further annotated with a V, P, E, M, C, F, R, N depending upon extension of tumor beyond the hepatic parenchyma (Figure 1). Because of the differing systems, direct comparison of results between cooperative group specific trials has been very difficult. To address this issue, the Childhood Hepatic tumour International Consortium (CHIC) group sought to create a dataset of sufficient size to empower robust statistical analysis as a foundation for an internationally cooperative risk stratification system.

Table 1. Post-Surgical based staging system (Evans) used in INT-0098 and COG P9645

<table>
<thead>
<tr>
<th>Stage</th>
<th>Surgical Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Tumour resected at diagnosis, margins negative</td>
</tr>
<tr>
<td>II</td>
<td>Tumour resected at diagnosis, margins microscopic positive</td>
</tr>
<tr>
<td>III</td>
<td>Biopsy at diagnosis or gross residual disease after attempted resection</td>
</tr>
<tr>
<td>IV</td>
<td>Metastatic disease</td>
</tr>
</tbody>
</table>

Table 2. Hybrid risk stratification based staging system used in COG AHEP-0731

<table>
<thead>
<tr>
<th>Risk Group</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very Low risk</td>
<td>Stage I pure fetal histology</td>
</tr>
<tr>
<td>Low Risk</td>
<td>Stage I non pure PFH or Stage II non-small cell undifferentiated</td>
</tr>
<tr>
<td>Intermediate risk</td>
<td>Stage I or II with small cell undifferentiated or Stage III</td>
</tr>
<tr>
<td>High Risk</td>
<td>Stage IV or any stage + initial AFP<100ng/mL</td>
</tr>
</tbody>
</table>

PRETEXT group (Figure 1) has been a robust predictor of outcome in all prior investigations of risk factors, while other risk factors, including the various PRETEXT Annotation Factors, have achieved significance in certain cooperative group studies, while remaining non-significant in others. (Fuchs 2002, Aronson 2005, Meyers 2009, Maibach 2012). Other potential risk factors were postulated, but due to low patient numbers, never achieved statistical significance (Meyers 2009, Maibach 2012). CHIC was created to specifically address this challenge by collecting and combining the data of all four groups in order to gain a dataset with enough statistical power to identify reliable risk factors in HB. The following trials conducted between 1989 and 2008 were included in this database: SIOPEL 2 and 3 from SIOPEL, INT0098 and P9645 from COG, HB 89 and HB 99 from GPOH, JPLT 1 and 2 from JPLT 4-6, 8, 10-15. Ongoing trials and trials where follow-up was not yet mature, including SIOPEL 4, SIOPEL 6, and COG AHEP0731, could not be included and it is our hope that in the future the results of these most recent trials will be added and interrogated as a validation set of the findings.
Figure 1. Pretreatment Extent of disease (PRETEXT) system

As shown in Table 3, several analyses were performed to test the reliability and coherence of the CHIC database. They included analysis per every individual trial registered in the database, as well as per treatment period, to exclude any potential treatment era related bias. Additionally, patients were analyzed according to whether or not a central pathology review was performed as an integral component of the parent study in order to control for the potential influence of an incorrect histopathological diagnosis on outcome. Neither treatment time-period nor central pathologic review appeared to significantly confound our ability to include the data in analysis of the event-free survival (EFS) of other potential prognostic variables.

Table 3: CHIC collaborative dataset - Patient demographics, event status and follow-up

<table>
<thead>
<tr>
<th>Reference</th>
<th>N=</th>
<th>Enrolment (mm/yyyy)</th>
<th>Event Status</th>
<th>Median Follow Up (Range; Years)</th>
<th>Numbe r Alive at Last Contact</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Start</td>
<td>End</td>
<td>No Event</td>
<td>Disease</td>
</tr>
<tr>
<td>HB 89</td>
<td>72</td>
<td>3/1988</td>
<td>10/1993</td>
<td>53</td>
<td>12</td>
</tr>
<tr>
<td>HB 99</td>
<td>141</td>
<td>1/1999</td>
<td>12/2008</td>
<td>103</td>
<td>28</td>
</tr>
<tr>
<td>INT 0098</td>
<td>170</td>
<td>8/1999</td>
<td>12/1992</td>
<td>108</td>
<td>53</td>
</tr>
<tr>
<td>JPLT 1</td>
<td>106</td>
<td>12/1990</td>
<td>11/1997</td>
<td>72</td>
<td>27</td>
</tr>
<tr>
<td>JPLT 2</td>
<td>298</td>
<td>4/1999</td>
<td>12/2010</td>
<td>212</td>
<td>65</td>
</tr>
<tr>
<td>P9845</td>
<td>277</td>
<td>4/1999</td>
<td>11/2006</td>
<td>190</td>
<td>78</td>
</tr>
<tr>
<td>SIOPEL 2</td>
<td>135</td>
<td>11/1995</td>
<td>5/1998</td>
<td>97</td>
<td>26</td>
</tr>
<tr>
<td>SIOPEL 3</td>
<td>406</td>
<td>7/1998</td>
<td>12/2006</td>
<td>319</td>
<td>75</td>
</tr>
<tr>
<td>Overall</td>
<td>1605</td>
<td>3/1988</td>
<td>12/2010</td>
<td>1154</td>
<td>364</td>
</tr>
</tbody>
</table>

* For patients without an EFS event.
Univariate analysis showed EFS was adversely correlated with advanced PRETEXT group, involvement of the major hepatic inflow (portal vein) and outflow vessels (hepatic veins) (+V and +P), contiguous extrahepatic disease (+E), tumour multifocality (+F), and tumour rupture (+R). Higher age, low AFP and metastatic disease were also associated with inferior outcome. Lower age was associated with superior outcomes and this relationship between age and outcome is an important new finding for this tumour which will be the focus of ongoing analysis of the database.

Initial multivariate analysis using a backwards elimination technique of those factors most significant in the univariate analysis is shown in Table 4. This led to selection of a risk backbone based upon PRETEXT I/II, PRETEXT III, PRETEXT IV, AFP <100, and metastatic disease. Within each of these backbone groups, the presence or absence of the remaining risk factors were further stratified by multivariate estimates of events to determine those constellations of risk factors that were most predictive of event free survival. The results of the initial multivariate analysis had varying breakpoints for different age groups, AFP values, and number of positive PRETEXT annotation factors (V, P, E, F, R). In search of robust simplicity we repeated the backwards elimination analysis using more stringent p-values and confidence intervals. This led to the condensation of meaningful age categories, and simple presence or absence any V, P, E, F, R.

Table 4. EFS Kaplan Meier estimates in risk categories defined by statistical analysis within Hepatoblastoma CHIC database backbone groups

<table>
<thead>
<tr>
<th>Backbone group</th>
<th># pts in subgroup</th>
<th>Factor</th>
<th>observed 5 year EFS and 95% conf.int.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. PRETEXT I/II</td>
<td>365</td>
<td>Age 0-<3</td>
<td>91% (87-93%)</td>
</tr>
<tr>
<td></td>
<td>56</td>
<td>Age 3-7</td>
<td>72% (57-83%)</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>Age ≥8</td>
<td>40% (18-61%)</td>
</tr>
<tr>
<td>2. PRETEXT III</td>
<td>260</td>
<td>AFP>1000, negative VPEFR</td>
<td>89% (85-92%)</td>
</tr>
<tr>
<td></td>
<td>109</td>
<td>AFP>1000, positive VPEFR</td>
<td>73% (64-80%)</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>AFP<1000, + / - VPEFR</td>
<td>61% (40-76%)</td>
</tr>
<tr>
<td>3. PRETEXT IV</td>
<td>51</td>
<td>Age<3, negative VPEFR</td>
<td>84% (70-92%)</td>
</tr>
<tr>
<td></td>
<td>76</td>
<td>Age<3, positive VPEFR</td>
<td>56% (44-67%)</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>age3-7, + / - VPEFR</td>
<td>40% (19-61%)</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>Age ≥8, + / - VPEFR</td>
<td>31% (10-65%)</td>
</tr>
<tr>
<td>4. Metastatic</td>
<td>183</td>
<td>AFP>1000</td>
<td>47% (40-55%)</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>100<AFP≤1000</td>
<td>18% (4-38%)</td>
</tr>
<tr>
<td>5. AFP≤100</td>
<td>65</td>
<td>---</td>
<td>35% (24-47%)</td>
</tr>
</tbody>
</table>

Validation was done utilizing a statistical “bootstrapping” technique (Frazier 2015). This process was based on merging aspects of clinical relevance and statistical significance and took place in a series of discussions between clinicians and statisticians. We took into account not only statistical significance, but also the need to guide treatment in a clinically feasible way, the potential ease of application by clinicians of all backgrounds, and the need to create treatment groups of a size that are amenable to study in clinical trials. The results of these discussions yield a PRETEXT based series of four classification trees shown in Figure 2.
Figure 2 - Children’s Hepatic tumour International Collaboration- Hepatoblastoma Stratification (CHIC-HS) - Color highlights of groups within each tree indicate which prognostic factor determined patient assignment to the ultimate group assignment: very low, low, intermediate, or high risk group.

References

APPENDIX 6 – BOSTON OTOTOXICITY SCALE

Penelope R. Brock, Kristin R. Knight, David R. Freyer, Kathleen C.M. Campbell, Peter S. Steyger, Brian W. Blakley, Shahrad R. Rassekh, Kay W. Chang, Brian J. Fligor, Kaukab Rajput, Michael Sullivan, and Edward A. Neuwelt

Purpose
The platinum chemotherapy agents cisplatin and carboplatin are widely used in the treatment of adult and pediatric cancers. Cisplatin causes hearing loss in at least 60% of pediatric patients. Reducing cisplatin and high-dose carboplatin ototoxicity without reducing efficacy is important.

Patients and Methods
This review summarizes recommendations made at the 42nd Congress of the International Society of Pediatric Oncology (SIOP) in Boston, October 21-24, 2010, reflecting input from international basic scientists, pediatric oncologists, otolaryngologists, oncology nurses, audiologists, and neurosurgeons to develop and advance research and clinical trials for otoprotection.

Results
Platinum initially impairs hearing in the high frequencies and progresses to lower frequencies with increasing cumulative dose. Genes involved in drug transport, metabolism, and DNA repair regulate platinum toxicities. Otoprotection can be achieved by acting on several these pathways and generally involves antioxidant thiol agents. Otoprotection is a strategy being explored to decrease hearing loss while maintaining dose intensity or allowing dose escalation, but it has the potential to interfere with tumoricidal effects. Route of administration and optimal timing relative to platinum therapy are critical issues. In addition, international standards for grading and comparing ototoxicity are essential to the success of prospective pediatric trials aimed at reducing platinum-induced hearing loss.

Conclusion
Collaborative prospective basic and clinical trial research is needed to reduce the incidence of irreversible platinum-induced hearing loss, and optimize cancer control. Wide use of the new internationally agreed-on SIOP Boston ototoxicity scale in current and future otoprotection trials should help facilitate this goal.

J Clin Oncol 30:2408-2417. © 2012 by American Society of Clinical Oncology

Ototoxicity Grades and Classification
Numerous ototoxicity criteria or grading systems have been developed and used to classify hearing loss in children, but in the clinical trial setting, uniformity is essential. There are currently two main types of ototoxicity assessment criteria: (1) those that rely on change of hearing from baseline, including WHO Common Toxicity Criteria, National Cancer Institute Common Toxicity Criteria for Adverse Events (CTCAE), protocol criteria from Children’s Cancer Group A9961 (CCG-A9961; phase III intergroup average-risk medulloblastoma protocol), and the Children’s Hospital Boston (CHB) scale, and (2) those specifically written for children that measure absolute hearing levels, including Brock et al. and Chang and Chinosornvatana (hereafter Brock and Chang), and the new SIOP Boston scale proposed in this article. The new scale detailed in Table 2, which all participants agreed on, combines the best elements from all the assessment criteria. This new scale will make it possible to compare clinical trial outcomes world-wide.

Classification of ototoxicity in children should be objective, sensitive, reliable, valid, functionally relevant, applicable to results obtained at any age, and simple to understand and describe. The primary intent of any scale will depend on whether its purpose is to guide treatment decisions, identify ototoxicity at the soonest possible opportunity during treatment, or report the incidence and severity of acquired hearing loss in children at the completion of treatment for comparison of clinical trials. The SIOP scale is intended to be used for patients at the end of treatment on a clinical trial (Table 2). It is sensitive to high-frequency hearing losses that result in reduced audibility of the average speech spectrum, and it uses the criteria that correspond to functional outcomes, including the need for audiologic interventions such as hearing aids and other assistive technologies.
The scale was based on a modification of the CHB functional scale, which classifies hearing loss as grade 1, 2, or 3 on the basis of change in hearing threshold of 20 dB or more compared with baseline measures. The CHB scale was validated by using the Brock scale which, in a multivariate analysis, showed that cisplatin dose was a significant predictor of hearing loss. The CHB scale was favored for its simplicity and objectivity, but two main modifications were recommended. The first was to use absolute hearing levels similar to those of Brock and Chang. The second was to add a grade 4 that was equivalent to Brock and Chang grade 3.

The reason for opting for absolute hearing levels is that, although baseline evaluation is the gold standard for ototoxicity monitoring and obtaining a baseline is recommended for all children who are treated with cisplatin, it has been recognized for many years that a complete and reliable baseline evaluation is not always possible in young children with cancer. Children are often quite sick, they may be fearful in the clinical setting, and attention or cooperation may be limited. When grading is based on change from baseline, audiograms from children without a baseline are not gradable. Furthermore, absolute hearing threshold levels after cessation of treatment, rather than change from baseline, determine whether an individual child has sufficient acoustic access to all of the speech sounds for everyday listening situations, including distance hearing and the ability to understand speech in a noisy environment.

Grade 4 was added, equivalent to Brock and Chang grade 3, to distinguish children who acquire moderate or greater ototoxic hearing loss from those with milder impairment, since there are important functional and clinical differences as the degree of hearing loss increases. A minor modification was to expand grade 3 to include hearing loss greater than 20 dB at 2,000 or 3,000 Hz, since audibility at both 2,000 and 3,000 Hz is critical for speech intelligibility, and loss at either of these frequencies is commonly used as the indication for hearing aids in children.

The SIOP Boston ototoxicity scale is being validated on existing data that include international multicenter audiologic results in very young children treated with cisplatin. Results will be directly compared with existing scales (CTCAE versions 3 and 4; Brock and Chang) to determine whether the SIOP scale better correlates with functional outcomes and offers improved simplicity and inter-rater reliability. Results will be submitted for future publication and the SIOP scale will be recommended if the study outcomes are positive.

APPENDIX 7 – RECIST CRITERIA 1.1

The following contains excerpts from the RECIST criteria.
For more information regarding RECIST and a full copy of criteria, go to http://www.eortc.org [47].

Definitions for the modified response evaluation criteria in solid tumours

Measurable lesions

Tumour lesions: Must be accurately measured in at least one dimension (longest diameter in the plane of measurement is to be recorded) with a minimum size of:

- 10mm by CT scan (CT scan slice thickness no greater than 5 mm)
- 10mm calliper measurement by clinical exam (lesions which cannot be accurately measured with callipers should be recorded as non-measurable)
- 20mm by chest X-ray

Malignant lymph nodes: To be considered pathologically enlarged and measurable, a lymph node must be ≥15mm in short axis when assessed by CT scan (CT scan slice thickness recommended to be no greater than 5mm). At baseline and in follow up, only the short axis will be measured and followed.

Non-measurable lesions

All other lesions, including small lesions (longest diameter < 10mm or pathological lymph nodes with P10 to < 15mm short axis), as well as truly non-measurable lesions. Lesions considered truly non-measurable include: leptomeningeal disease, ascites, pleural or pericardial effusion, inflammatory breast disease, lymphangitic involvement of skin or lung, abdominal masses/abdominal organomegaly, identified by physical exam that is not measurable by reproducible imaging techniques.

Target lesions

When more than one measurable lesion is present at baseline all lesions up to a maximum of five lesions total (and a maximum of two lesions per organ) representative of all involved organs should be identified as target lesions and will be recorded and measured at baseline (this means in instances where patients have only one or two organ sites involved a maximum of two and four lesions respectively will be recorded). Target lesions should be selected on the basis of their size (lesions with the longest diameter), be representative of all involved organs, but in addition should be those that lend themselves to reproducible repeated measurements. It may be the case that, on occasion, the largest lesion does not lend itself to reproducible measurement in which circumstance the next largest lesion which can be measured reproducibly should be selected.

Non-target lesions

All other lesions (or sites of disease) including pathological lymph nodes should be identified as non-target lesions and should also be recorded at baseline. Measurements are not required and these lesions should be followed as ‘present’, ‘absent’, or in rare cases ‘unequivocal progression’ (more details to follow). In addition, it is possible to record multiple non target lesions involving the same organ as a single item on the case record form (e.g. ‘multiple enlarged pelvic lymph nodes’ or ‘multiple liver metastases’).
Evaluation of target lesions

- **Complete Response (CR):** Disappearance of all target lesions. Any pathological lymph nodes (whether target or non-target) must have reduction in short axis to <10 mm.
- **Partial Response (PR):** At least a 30% decrease in the sum of diameters of target lesions, taking as reference the baseline sum diameters.
- **Progressive Disease (PD):** At least a 20% increase in the sum of diameters of target lesions, taking as reference the smallest sum on study (this includes the baseline sum if that is the smallest on study). In addition to the relative increase of 20%, the sum must also demonstrate an absolute increase of at least 5 mm. (Note: the appearance of one or more new lesions is also considered progression).
- **Stable Disease (SD):** Neither sufficient shrinkage to qualify for PR nor sufficient increase to qualify for PD, taking as reference the smallest sum diameters while on study.

Evaluation of non-target lesions

While some non-target lesions may actually be measurable, they need not be measured and instead should be assessed only qualitatively at the time points specified in the protocol.

- **Complete Response (CR):** Disappearance of all non-target lesions and normalisation of tumour marker level. All lymph nodes must be non-pathological in size (< 10mm short axis).
- **Non-CR/Non-PD:** Persistence of one or more non-target lesion(s) and/or maintenance of tumour marker level above the normal limits.
- **Progressive Disease (PD):** Unequivocal progression (see comments below) of existing non-target lesions. (Note: the appearance of one or more new lesions is also considered progression).

Evaluation of best overall response

Best response determination in trials where confirmation of complete or partial response IS NOT required: Best response in these trials is defined as the best response across all time points (for example, a patient who has SD at first assessment, PR at second assessment, and PD on last assessment has a best overall response of PR). When SD is believed to be best response, it must also meet the protocol specified minimum time from baseline.

If the minimum time is not met when SD is otherwise the best time point response, the patient’s best response depends on the subsequent assessments. For example, a patient who has SD at first assessment, PD at second and does not meet minimum duration for SD, will have a best response of PD. The same patient lost to follow-up after the first SD assessment would be considered inevaluable.

<table>
<thead>
<tr>
<th>Target lesions</th>
<th>Non-target lesions</th>
<th>New lesions</th>
<th>Overall response</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR</td>
<td>CR</td>
<td>No</td>
<td>CR</td>
</tr>
<tr>
<td>CR</td>
<td>Non CR/non PD</td>
<td>No</td>
<td>PR</td>
</tr>
<tr>
<td>CR</td>
<td>Not evaluated</td>
<td>No</td>
<td>PR</td>
</tr>
<tr>
<td>PR</td>
<td>Non PD or not all evaluated</td>
<td>No</td>
<td>PR</td>
</tr>
<tr>
<td>SD</td>
<td>Non PD or not all evaluated</td>
<td>No</td>
<td>SD</td>
</tr>
<tr>
<td>Not all evaluated</td>
<td>Non-PD</td>
<td>No</td>
<td>NE</td>
</tr>
<tr>
<td>PD</td>
<td>Any</td>
<td>Yes or No</td>
<td>PD</td>
</tr>
<tr>
<td>Any</td>
<td>PD</td>
<td>Yes or No</td>
<td>PD</td>
</tr>
<tr>
<td>Any</td>
<td>Any</td>
<td>Yes</td>
<td>PD</td>
</tr>
</tbody>
</table>
Time point response: patients with non target disease only:

<table>
<thead>
<tr>
<th>Non target lesions</th>
<th>New lesions</th>
<th>Overall response</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR</td>
<td>No</td>
<td>CR</td>
</tr>
<tr>
<td>Non CR/non PD</td>
<td>No</td>
<td>Non CR/non PD</td>
</tr>
<tr>
<td>Not all evaluated</td>
<td>No</td>
<td>NE</td>
</tr>
<tr>
<td>Unequivocal PD</td>
<td>Yes or no</td>
<td>PD</td>
</tr>
<tr>
<td>Any</td>
<td>Yes</td>
<td>PD</td>
</tr>
</tbody>
</table>

CR (complete response), PD (progressive disease) and NE (inevaluable). A ‘non CR/non PD’ is preferred over ‘stable disease’ for non target disease since SD is increasingly used as endpoint for assessment of efficacy in some trials so to assign this category when no lesions can be measured is not advised.
APPENDIX 8 – HEPATOBLASTOMA RESPONSE CRITERIA

CRITERIA FOR ASSESSMENT OF TUMOUR RESPONSE IN HEPATOBLASTOMA

Complete response (CR): As definition in RECIST 1.1 criteria (Appendix 7) and normal serum AFP value (for age).

Partial response (PR): As definition in RECIST 1.1 criteria (Appendix 7) and a decreasing serum AFP value, > 1 log (90% reduction) below the original measurement, or no radiological evidence of disease (CR) but abnormal serum AFP value (for age).

Stable disease (SD): As definition in RECIST 1.1 criteria (Appendix 7) or a decreasing serum AFP value, > 1 log (90% reduction), even without clinical (physical and/or radiological) evidence of tumour re-growth.

Progressive disease (PD): As definition in RECIST 1.1 criteria (Appendix 7) or an increase of the serum AFP concentration (three successive 1-2 weekly determinations) even without clinical (physical and/or radiological) evidence of tumour re-growth.

Please note:
- Bear in mind that "no change" or even an increase in "tumour" volume, especially during the first few weeks of chemotherapy, may be the consequence of intra-tumoural haemorrhage/oedema. If serum AFP is falling, continue the same chemotherapy for at least one more course.
- "Tumour lysis syndrome" may lead to an initial rise in AFP before the level falls.
- Sometimes the actual tumour volume does not change in response to therapy, but the AFP decreases; this would not necessarily require a change of therapy.
- The rate of decline of AFP has not been shown to be of prognostic value.
APPENDIX 9 – SURGICAL IMAGING GUIDELINES

Please refer to www.siopel.org for the current advice.