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Abstract 

Using student-level cross-sectional data of 6th and 9th graders we estimate class composition effects impacting on 

academic achievement. The richness of the dataset allows to tackle endogeneity stemming from between and within-

school non-random sorting of students through the inclusion of many control covariates. We find that increasing the 

percentage of high achievers, in a 6th grade class, has a negative effect on student performance, while, in a 9th grade 

class, the effect is positive. Low achieving classmates leads to better performances in 6th grade classes, but to lower 

performances in 9th grade ones. Students with no past retentions do better with an increasing proportion of this same 

type of classmates. Larger shares of low-income classmates hurt performance in general. Apart from the past retention 

dimension where there is evidence supporting tracking students, along all other compositional dimensions it seems 

fairer that each class reflects the respective school-grade population heterogeneity. 
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1 Introduction 

All over the world students spanning elementary to upper secondary schooling are grouped in classes 

so that teaching can be delivered in an efficient way. It is safe to admit that, in general, the number of 

students at a given year-school-grade is always larger than the number of available teachers. Whereas the 

need for grouping students seems an innocuous aspect of any education system, how they are grouped is not, 

at all, a bland topic. With high probability, different agents within the education system will carry different 

beliefs, interests, and constraints with respect to what might be considered an optimal placement of students 

across classes. Some parents may prefer to place their children among intellectually gifted classmates while 

others might prefer to place them in environments where specific cultural and social characteristics are 

predominant. Principals may have to comply with specific legislative conditions when setting up classes or 

may try to mirror different personal priors with respect to efficiency and fairness considerations at the school 

level when forming classes.  

One implicit difficulty stemming from the heterogeneity of views of what might constitute an optimal 

allocation of students across classes is the multitude of dimensions that the composition of a class can be 

looked from. Indeed, which dimension of class composition is the most important in explaining in-class 

behavior (and possibly the interactions between classmates outside the class) and, consequently, educational 

outcomes is, a priori, uncertain given the large number of dimensions that may be defined. Examples of such 

dimensions are classmates’ previous attainment (Sund, 2009), gender and race (Hoxby, 2000a), or even 

language spoken (Yao, Ohinata & Ours, 2016). On top of this, each class compositional dimension may 

affect educational outcomes heterogeneously, depending on the students’ individual characteristics, which 

adds further complexity to the topic. 

In this paper, and in contrast with most of the empirical literature, we analyze, simultaneously, the 

effects of different class compositional dimensions on individual student cognitive achievement. We make 

use of a rich dataset that allows us to tackle the major endogeneity concerns when estimating class 

composition effects, which result from non-random allocation of students between schools and across classes 

within each school. The dataset allows us to control for many student characteristics, including prior 

achievement, to measure several class composition dimensions, and also to control for school effects. We are 

also able to use an instrumental variable that has been used in this literature – the school-grade average class 

size –  for the purpose of estimating an IV model as a robustness check of the OLS specification to tackle 

eventual contamination bias (this will be detailed below in the methodology section). In addition, the dataset 

includes information on 6th and 9th grade students so that we can also study differences in the relevance of 

class composition effects across different ages. 

We address the following questions: 1) which dimensions of class composition affect an individual 

student achievement?; 2) do these effects depend on the students’ individual characteristics?; and 3) how do 

these results differ between 6th and 9th graders? 
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Our approach has greater value from a public policy perspective since it offers a swift comparison of 

the direction and magnitude of the effects stemming from several different dimensions of class composition. 

An evidence based clearer comparison of several different class compositional effects should help on the 

complex task of how to group students across classes.  

This work is structured as follows. A literature review is provided in the next section. Section 3 details 

the dataset and presents some descriptive statistics. Section 4 specifies the econometric methodology. 

Section 5 presents the estimation results, while Section 6 discusses them. Section 7 summarizes policy 

implications for schools regarding class formation. Finally, Section 8 concludes. 

2 Literature Review 

The type of schooling offered to students is influenced by school policies, regarding class formation, 

in, at least, two ways: how many and what kind of classmates exist in each class. Lazear (2001), shows that, 

for a given level of students’ quality (measured as the percentage of time each pays attention to the teacher) 

increasing class size would exponentially decrease class learning time – more students, more disruptions. But 

one can similarly argue that for a given class size, increasing the proportion of disruptive students should 

also hamper overall classmates’ learning. These two similar arguments establish, then, an important link 

between class size and class composition to which we will come back in a moment.  

Concerning, specifically, the kind of classmates found in a given class, much attention has been 

devoted to the case where students are tracked into homogenous classes with respect to their ability or 

predetermined achievement levels. Sacerdote (2011) indicates that half of the surveyed research points to 

positive effects from this policy. However, this tends to be less clear when one allows for heterogeneous 

effects with respect to own students’ characteristics. For example, Burke & Sass (2013) provide evidence 

that different individuals (in terms of their own quality level) seem to benefit differently from being placed in 

classes with higher shares of top, mid, or low achievers, which adds extra complexity to whom gains more 

from policies related with class quality homogeneity or heterogeneity. 

Our study places the class compositional effects’ identification within the education production 

function framework following, for example, Wößmann & West (2006), Todd & Wolpin (2003), Lazear 

(2001), Pritchett & Filmer (1999), Hanushek (1979) and Hanushek (1970).1 This approach may be traced 

back to the earlier Coleman Report (Coleman, Campbell, Hobson, McPartland, Mood, Weinfeld, et al., 1966) 

which, already then, presented the idea that educational outcomes were linked to a set of inputs which 

included the sort of peers one finds in his/her school. Although it reported that the main predictors of 

educational outcomes were family and socio-economic background, the student body composition also 

helped in predicting outcomes (especially those of minorities).  

                                                      
1 One of the earliest to refer to the educational production function. Hanushek is, then, a staple reference on educational 

production functions in both their theoretical and empirical usages. See also Hanushek (2008). 
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The consistent estimation of class composition effects requires endogeneity to be addressed. It arises 

from possible non-random sampling of students across schools and then across classes, see e.g. Wößmann & 

West (2006) and Bosworth (2014). Between-school sorting of students may occur if parents are stratified 

regionally according to a given characteristic (e.g. professional occupation, level of education or income). It 

causes a potential identification problem because the composition of the classes will then reflect the 

composition of the school which, in turn, is not independent of factors that determine, themselves, 

educational outcomes of the students (such as the parents’ characteristics). The correlation between school 

and class composition is not expected to be perfect, nevertheless, since students may be, in turn, sorted 

across classes, within-schools, in a systematic way. Within-school sorting may take the form of segregating 

low from high achievers, or segregating whether they have been retained in the past or not, perhaps reflecting 

different priors from principals or teachers related to how a class should be formed. Consequently, students 

may experience class compositions that might be predicted by their own characteristics, while these, in turn, 

are likely to explain their educational outcomes too. 

To overcome endogeneity different researchers have resorted to different approaches, conditional on 

the type of data at hand. Hoxby (2000a) exploits idiosyncratic variations (first differences) of gender and 

racial compositions in American schools, between adjacent years, due to unanticipated demographic 

changes, to avoid non-randomness allocation issues. She finds, firstly, that if the cohort average exam score 

increases, unexpectedly, by 1 point, then a student from that cohort scores more 0.1 to 0.5 points, on average. 

Secondly, that, in a given cohort, proportionally more females cause better performances in mathematics and 

reading for both males and females. Finally, that peer effects are stronger and beneficial within racial 

groups.2 Hoxby (2000b), finds no significant effects from class size to pupil achievement.3 Hoxby uses 

credible unexpected random population variation as instrument for class size while also applying school 

fixed effects. 

There is a stream of literature that makes use of grade-school averages as instruments for class level 

variables. Akerhielm (1995) initiates such procedure using average class size across a given subject, within a 

school, to instrument actual class size. Although her procedure does account for within school sorting, it does 

not take into account between-school sorting. Jürges & Schneider (2004), Wößmann & West (2006) and 

West & Wößmann (2006), again, employ a two-stage regression procedure to identify class size effects 

(controlling for within-school sorting with school fixed effects) in the TIMSS’ database. They instrument 

actual class size with the average class size of the respective grade. 

On the nature of within-school students’ allocation, West & Wößmann (2006) put forward the 

hypothesis of compensatory sorting. This hypothesis states that the class size reduction treatment comes hand 

                                                      
2 More recently, Card & Giuliano (2016) through a regression discontinuity design find that high achievers belonging to 

ethnic minorities benefit from tracking to high achieving classes. Contrary to Hoxby (2000a), they hypothesize that 

exists negative, not positive, peer pressure that makes top achievers from minorities to underperform in a regular 

classroom. 
3 Although identification of class size effects is not the main goal of this paper, we review some of its literature since it 

may contain useful insights towards the identification of class composition effects. Moreover, class size is potentially 

intimately related to class composition, see Lazear (2001), West & Wößmann (2006), and Bosworth (2014). 
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in hand with a second treatment of sorting students with weak achievement-related inputs precisely to the 

classes of reduced dimensions. That is, students benefiting from less populated classes also experience, in 

general, a higher proportion of disadvantaged classmates (besides tending themselves to be disadvantaged 

students). They point that countries with external exams are prone to induce such within-school 

compensatory schemes.4 The pressure to minimize the number of students with negative exam scores may 

dictate to a certain extent how classes are formed every year.  

From the discussion so far, we acknowledge two points. First, the importance of including class size in 

the upcoming econometric specifications, at least as a control variable. One needs to hold constant the class 

size “treatment” when interpreting the class composition “treatments”. Or in other words, controlling for 

class size is required for a ceteris paribus interpretation of the compositional coefficients (see Bosworth, 

2014). Second, across econometric specifications that jointly include class compositional measures and class 

size we may regard this last one as the potential endogenous variable. This should be the case if those who 

are in charge, within each school, of class formation believe that class size reduction is a stronger 

compensatory policy than specific class compositions. We provide suggestive evidence in favor of the class 

size compensatory hypothesis at the end of Section 3. 

More recent literature still points to gains from having homogeneous classes according to past student 

performance, see Collins & Gan (2013). Duflo, Dupas & Kremer (2011) in a randomized experiment in 

Kenyan schools also report positive peer effects to the achievement levels of any type of student from the 

presence of high achievers in class. They, interestingly, further observe that sorting students to homogenous 

classes with respect to their initial levels of achievement caused all types of students to perform better. They 

explain that low achievers, although deprived of the potential contributions of the high achieving peers, 

might have benefited from better tailored teaching. 

Finally, some authors, e.g. Hanushek, Kain, Markman & Rivkin (2003), Sund (2009) and Burke & 

Sass (2013), have been able to analyze longitudinal student-level datasets with comparable students to the 

ones we analyze in this paper, in terms of age and grade. The panel structure of the data allows them to 

control for several unobserved heterogeneities by including (separately or jointly) student, teacher, and 

school-by-grade fixed effects or other combinations of these in their specifications. Hanushek et al. (2003) 

and Sund (2009) point to gains in achievement by the average student from having peers with higher levels 

of prior mean achievement. Burke & Sass (2013), in turn, point to gains for a given student in having better, 

but not too better, peers. They argue that a too large difference of prior achievement may hamper 

communication between students. 

                                                      
4 Which is the case of Portugal, in the period studied, with its high-stakes national exams. 
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3 Data and Descriptive Statistics 

This paper makes use of an administrative dataset maintained by the Portuguese Ministry of 

Education.5 We use information on all students enrolled in public schools (only a minority is enrolled in 

private schools), in continental Portugal, from grades 6 and 9 in the academic year of 2011-12. The dataset 

provides information on students’ class and school membership, their scores by subject and by type of 

examination, and their academic track. National exams’ scores (high-stakes exams) of mathematics and 

reading taken at the end of the 2011-12 academic year provide the achievement measure. We also have 

information on previous achievement: a baseline score from a low-stakes national exam.6 

The dataset also includes several demographic variables characterizing each individual pupil, such as 

gender, parents’ education (we use the education level of the parent with the highest degree), and home 

access to internet. Using the students’ birthdate, we created a dummy variable taking the value one if their 

age (at the beginning of the academic year – mid September) was equal or lower than the reference age for 

the grade the student is enrolled in (the reference being the maximum age a student is expected to have, at the 

beginning of the academic year, without having repeated any grade in past academic years). For 6th grade 

students the reference age is 12 years-old, while for 9th graders it is 15 years-old. Cultural background is 

proxied by a dummy variable taking the value one if the student is a foreigner, i.e. if the student was born in 

one of the Portuguese speaking countries excluding Portugal and zero if born in Portugal.7 Low-income 

students were flagged if they received social support (equal to one if they did, zero otherwise). 

Our variables of interest, related to the composition of the classes, were created in the following 

manner. Knowing, for each pupil, his/her class membership, we were able to compute, at the class level, the 

percentage of: males, pupils with home access to internet, pupils below (or at) the reference age, pupils born 

in a foreign country, and low-income pupils. On top of these compositional measures we further compute, 

for each class, the percentage of high and low achievers. We define as high achiever a student with a baseline 

score of 5 and as low achiever one with a baseline score of 1 or 2 (implicitly those with baseline scores of 3 

or 4 compose the middle achievers). These groups, high and low achievers, vary from 3.3% to 17.2% of the 

respective relevant population, depending on subject and grade (see Appendix A.1). We stress that all class 

compositional measures are “leave-out-percentages” as we excluded the contribution of student i when 

                                                      
5 We thank DGEEC for providing access to the anonymized version of the MISI administrative dataset. 
6 The scores in the high stakes national exams (the dependent variable) is recorded on a scale from 0 to 100 points. 

Scores from 0 to 49 correspond to a negative evaluation while scores from 50 to 100 correspond to a positive 

evaluation. The baseline scores are measured on a scale from 1 to 5 points, where 1 and 2 points correspond to a 

negative evaluation and 3, 4, and 5 points correspond to a positive evaluation. For 9 th graders the baseline score refers to 

their 6th grade low stakes exam score, whereas for 6th graders it refers to their 4th grade low stakes exam score. For 

students that repeated the 4th or the 6th grade, we only use their latest score, i.e. the one immediately before they 

progress to the next grade. 
7 The Portuguese speaking countries (excluding Portugal) are: Brazil, Angola, Cape Verde, Guinea-Bissau, 

Mozambique, Sao Tome and Principe, and East Timor. The baseline case includes therefore students born in Portugal or 

in countries not belonging to Portuguese speaking countries. A third category differentiating those students not born 

neither in Portugal nor in a Portuguese speaking country would be of very small size and too heterogeneous. 
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computing them.8 Thus, one should interpret them as the percentage of classmates, of individual i, with a 

given characteristic, beyond individual i itself. Finally, we created a measure of class age dispersion9 and 

counted each student’s class size.  

The dataset includes students enrolled in classes of extremely reduced dimensions in relation to what 

was stipulated by law: a minimum and a maximum of 24 and 28, respectively. Although the law allowed for 

exceptional cases (e.g. to group pupils that would have overflown the limits of the remaining classes), we 

only considered classes with at least 14 students. The number of students left out using this threshold is 

marginal.10 

We note that the Portuguese educational system is divided into cycles.11 And within each cycle the 

composition of a class is typically kept unchanged by schools. In particular, in the 2nd cycle, students are 

normally allocated to the same class in grades 5 and 6. And in the 3rd cycle, the class composition is normally 

kept unchanged from grades 7 to 9. A reorganization of the classes may take place when students, 

simultaneously, move from the 6th to the 7th grade and from a school with grades 5 to 9 to a school with 

grades 7 to 12.12 

The sample is also restricted to classes of pupils enrolled under the regular academic track. This is the 

majority of students in continental Portugal. DGEEC (2013, page 28) reports that in 2011-12, the percentage 

of students in public schools enrolled in the regular academic track in the 2nd and 3rd cycles were 99% and 

90%, respectively. 

Finally, we only use students enrolled in schools with, at least, one class of both 6th and 9th grades 

(which implies schools with at least two classes). This requirement ensures, firstly, that school fixed effects 

can be estimated because each school will contribute with at least two classes to the estimation sample and, 

secondly, that the 1st stage of the instrumental variable robustness check is also estimable (more details on 

this on Section 4). 

                                                      
8 Moreover, there are missing values with respect to baseline scores and place of birth for some students. We compute 

these leave-out percentages just using the non-missing information from a given class, but for classes with up to 3 

missing values only. Students in classes with 4 or more missing values were dropped. Given a minimum class size of 14 

it is unlikely that disregarding the contribution of up to 3 classmates would dramatically bias the true compositional 

measures for the classmates of those particular classes. Nevertheless, to control for such an effect, we considered three 

dummy variables which take the value of one if the pupil belongs to a class for which we bypassed missing information 

of 1, 2, or 3 classmates, respectively. 
9 That measure is the mean absolute deviation of the classmates’ age to their class average age: 

Class Age Dispersion𝑖𝑗 =
∑ |𝐴𝑔𝑒𝑖𝑗−𝐶𝑙𝑎𝑠𝑠 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐴𝑔𝑒𝑖𝑗|𝑖∈𝑗

𝐶𝑙𝑎𝑠𝑠 𝑆𝑖𝑧𝑒𝑖𝑗
 with i indexing individual students and j the class they belong to. 

When this variable takes the value, say, 0.5, then it means that, for a given class, each classmate’s age is, on average 

and in absolute value, half year away from that class average age. 
10 We also assume that students that left the school during the first third of the academic year were not there from the 

beginning. Although this artificially shrinks class size it tackles the problem that stayers could only have been peer 

affected by leavers a small portion of the whole academic year. 
11 The 1st cycle contains grades 1 to 4; the 2nd cycle grades 5 to 6; the 3rd cycle grades 7 to 9 and the secondary grades 

10 to 12. 
12 There are four main types of public schools in Portugal: elementary schools with grades 1 to 4 (1st cycle); schools 

with grades 5 to 9 (2nd and 3rd cycles); schools with grades 7 to 12 (3rd cycle and secondary) and schools with grades 10 

to 12 (secondary). 
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The sample of students that could be used in our econometric analysis includes 59 thousand students 

in the 6th grade and 38 thousand in the 9th grade, corresponding to 56.5% and 44.0% of the students enrolled 

in the regular academic track, respectively, in continental Portugal´s public schools, in the academic year 

2011-12.13  

The fact that roughly half of the original population of students, of each grade, makes its way to the 

final estimation sample is explained by the list of restrictions enumerated in this section that we imposed on 

the dataset and also by missing values. The latter could introduce undesirable sample selection bias, but we 

argue that it should not be as large as one could, a priori, expect it to be. There are three main different levels 

at which a missing value may have been generated: at the central, school, and individual level. The latter 

level is mostly related with the fact that there is a non-marginal amount of missing values regarding parents’ 

education. This may happen either because students do not know the relevant information or because parents 

miss to report it to the school. It is conceivable that students from more disadvantaged backgrounds may tend 

to be the ones that do not know such characteristics about their parents, or, more likely, that their parents 

tend to show up less in school and are less likely to report the required information. This could lead to an 

under-representation of that kind of students in our regression samples and, in the limit, to an under-

representation of classes majorly composed by them. We note that the inclusion of the set of individual level 

regressors should control, to a large extent, for the likelihood of belonging to the regression sample. It is 

reasonable to suppose that higher baseline scores, not belonging to a low-income family, or even higher 

levels of parental education are positively correlated with the probability of disclosing all required 

information to the school, thus positively correlated to the likelihood of belonging to the regression sample. 

It is, thus, the set of coefficients associated to individual level controls the one we expect to pick the eventual 

sample selection bias and not the set of coefficients of the different class composition variables (the relevant 

ones in this paper). At the school level it may happen that the administrative services of the schools fail to 

export, to the central authorities, information without typos due to random daily typing incidents. 

Nevertheless, and irrespectively of its cause, the missing information originated at this level should be seen 

as school specific, thus within the school fixed effects. Lastly, we do not conceive as reasonable that losses 

of information that may have occurred at the central level may be systematically related to students’ 

characteristics or, more important to us, to class composition. 

Some descriptive statistics of the final dataset are presented in Table 1.14 Regarding the statistics on 

class level variables note that the relevant number of observations, in this context, is the number of classes, 

not of students (hence the different number of observations for these variables). The distributions of the class 

level variables are shown in Appendix A.3. 

                                                      
13 These figures refer to the number of students for whom there is a full set of information across all individual and class 

level variables and respect all necessary requirements enumerated in this Section. Percentages out of the totals 104 410 

and 86 416 for 6th and 9th grades, respectively, DGEEC (2013, pages 68 and 72). 
14 These statistics refer to students with a mathematics national exam score. Appendix A.2 presents the same statistics 

for those with a reading national exam score. As expected, both populations are very similar given they differ by just a 

few hundreds. 
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Table 1. Descriptive statistics. 

 
   

6th Grade - Mathematics National Exam 
 

9th Grade - Mathematics National Exam 

    
N Mean Std.Dev. Min Max 

 
N Mean Std.Dev. Min Max 

In
d
iv

id
u

al
 L

ev
el

 V
ar

ia
b
le

s Score 
 

  59,359  53.2 23.0 0 100 
 

38,046 53.0 23.5 0 100 

Baseline Score 
 

  59,359  2.8 1.0 1 5 
 

38,046 2.9 1.1 1 5 

Reference Age 
 

  59,359  0.88 0.33 0 1 
 

38,046 0.84 0.37 0 1 

Male 
 

  59,359  0.51 0.50 0 1 
 

38,046 0.48 0.50 0 1 

Foreigner 
 

  59,359  0.01 0.12 0 1 
 

38,046 0.01 0.12 0 1 

Internet 
 

  59,359  0.60 0.49 0 1 
 

38,046 0.72 0.45 0 1 

Low-Income 
 

  59,359  0.45 0.50 0 1 
 

38,046 0.39 0.49 0 1 

Tertiary Ed. (Parent) 
 

  59,359  0.18 0.38 0 1 
 

38,046 0.17 0.37 0 1 

Secondary Ed. (Parent) 
 

  59,359  0.48 0.50 0 1 
 

38,046 0.46 0.50 0 1 

C
la

ss
 L

ev
el

 V
ar

ia
b

le
s 

% High Achievers 
 

     3,552  14 12 0 81 
 

2,334 6 7 0 45 

% Low Achievers 
 

     3,552  9 8 0 59 
 

2,334 10 9 0 56 

% Reference Age 
 

     3,552  72 16 0 100 
 

2,334 69 17 0 100 

% Males 
 

     3,552  43 12 0 79 
 

2,334 40 13 0 80 

% Foreigners 
 

     3,552  2 3 0 29 
 

2,334 2 4 0 33 

% Internet 
 

     3,552  48 23 0 100 
 

2,334 59 24 0 100 

% Low-Income 
 

     3,552  39 17 0 95 
 

2,334 34 17 0 95 

Age Dispersion 
 

     3,552  0.6 0.2 0.2 1.7 
 

2,334 0.5 0.2 0.2 1.3 

Class Size 
 

     3,552  23 3 14 31 
 

2,334 21 4 14 30 

 

We end this section observing suggestive evidence supporting the West & Wößmann (2006) 

hypothesis of compensatory within-school sorting along the class size dimension (see discussion in Section 

2). The statistically significant sample correlations between class size and the class percentage of: high 

achievers, low achievers, below reference age students, and low-income students are, respectively, 0.20, -

0.14, 0.19 and -0.15. That is, we tend to find students with the, a priori, weakest achievement-related inputs 

(i.e. those in need of compensating inputs) in smaller classes. On the other hand, the statistically significant 

sample correlation between the class percentages of low and high achievers is -0.39. We would expect this 

correlation to have the opposite sign if any within-school compensatory sorting, other than through class 

size, say, through class “quality”, was in place. In that case low achievers would be grouped in classes with 

high achievers at the cost of the presence of middle achievers, thus reversing the sign of the latter correlation. 

4 Econometric Methodology 

The benchmark model to estimate class composition effects includes the variables detailed in Section 

3 and assumes that the marginal effects of the compositional variables do not depend on students’ individual 

characteristics and are not grade specific. It is given by: 

𝑌𝑖 = 𝛽0 + 𝑪𝒐𝒎𝒑𝒊,(−𝒊)
′ 𝜷𝟏 + 𝑪𝒊

′𝜷𝟐 + 𝑿𝑖
′𝜷𝟑 +  𝛾𝐺𝑖 + 𝑺𝑖

′𝜶 + 𝜀𝑖                                                    (1) 

where 𝑌𝑖 is the standardized mathematics or reading national exam score of student i; 𝑪𝒐𝒎𝒑𝒊,(−𝒊), 𝑪𝒊, 𝑿𝒊, 𝐺𝑖, 

and 𝑺𝒊 are the explanatory variables; 𝜀𝑖 is the student i idiosyncratic error term, and 𝛽0, 𝜷𝟏, 𝜷𝟐, 𝜷𝟑, 𝛾, and 𝜶 

are parameters to be estimated. Although the explanatory variables are indexed at the student i level, they are 

calculated at specific individual, class, or school levels as explained next. 

𝑪𝒐𝒎𝒑𝒊,(−𝒊) is the vector containing the percentages of classmates of student i with a given 

characteristic – high achievers, low achievers, below the reference age, males, born in a foreign country, 

home access to internet, and low-income. These are the class compositional variables of interest for this 
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paper. Recall from Section 3 that these compositional measures were computed in a leave-out fashion and 

based on predetermined characteristics of the students. The former enables them to be interpret as peer 

measures, while the latter makes one avoid reflexivity bias.15 

The 𝑺𝒊 vector includes school dummy variables, i.e. school fixed effects. As discussed in Section 2, 

consistent estimation of true 𝜷𝟏 requires that we credibly control for endogeneity stemming from non-

random allocation of students between and within schools. One popular way in the literature to control for 

between-school sorting is to include school fixed effects. The idea is to control for anything that is school 

specific, namely the type and number of students that it attracts, but also school specific policies with respect 

to class formation. In turn, these and other school specificities may well impact student outcomes making 

their omission a source of bias. Including school fixed effects contributes to interpret the estimated 𝜷𝟏 as if 

students had been randomly allocated across schools. Further, school fixed effects can also be seen as a step 

to control for teacher between-school sorting under similar arguments. 

 Next, 𝑿𝒊 is the vector containing all the individual level characteristics of the students presented in 

Section 316 and we regard them as important controls with respect to within-school sorting. As discussed in 

the literature review – that educational systems with external exams, such as Portugal, induce compensatory 

policies within the schools (i.e. within-school sorting of students) – and given the suggestive evidence 

presented in Section 3 – that students with weaker inputs tend to be found alongside each other (in smaller 

classes) – we consider that, indeed, those authorities are likely to have taken into account students’ 

characteristics during the class formation process, at least to some extent. On top of this, the information that 

school authorities have, at the moment of class formation, is mostly based on the dataset we actually use in 

this study. This means that if some sort of purposeful within-school sorting took place based on student level 

information, then it was a function of students’ characteristics observable to us.17 Moreover, we stress the 

inclusion, within this vector, of the baseline score as a control variable. Todd & Wolpin (2003) and 

Hanushek & Rivkin (2010) provide theoretical frameworks that justify the use of a baseline score as a 

summary of past factors under some technical assumptions.18 Its inclusion, then, allows to control for 

possible correlations between contemporary class assignment and those past factors. Thus, conditional on the 

set of individual students’ characteristics, one is closer to interpret the estimated 𝜷𝟏 as if students had been 

randomly allocated across classes within schools.19 

                                                      
15 Which could be the case if, for example, the percentages of high or low achievers had been defined through the 

outcome score and not by the predetermined baseline score as we did. In that case we would then have the outcome of 

student i influencing his/her classmates’ outcome and vice-versa, hence creating reflection bias, see Hanushek et al. 

(2003). 
16 Dummy variables describing each student baseline score, parent education, reference age status, gender, foreign 

background status, internet at home status and low-income status. 
17 Students are not interviewed nor tested by the school prior to admission, hence there is no private information to 

schools when forming classes that could be unobservable to us.  
18 We assume these technical conditions hold, especially that (past) input coefficients are geometrically declining with 

the distance to the age of the measurement of the outcome. 
19 Inclusion of parent education, besides capturing the direct effect of parents’ education input on students’ 

achievement, should help to control for both between and within school sorting since it may be positively related with 
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The term 𝑪𝒊 is a third vector containing other class level control variables, such as class size, age 

dispersion in the class, and dummies flagging classes with 1, 2, or 3 classmates whose information was not 

used when computing the class compositional variables of interest because of missing data.20 As discussed in 

the literature review, one needs to control for class size as this is a possible confounding treatment that seems 

to go hand in hand with the class compositional treatments. Moreover, its inclusion contributes to a clearer 

ceteris paribus interpretation of the relevant coefficients. Inclusion of the dummies related with missing 

information at the class level aims at controlling for any unobserved features of such classes that might 

explain why that information is missing. If those unobserved features somehow relate with student outcomes 

then not controlling for them could bias the estimate of 𝜷𝟏. And, lastly, controlling for class age dispersion 

means that one is closer to interpret the marginal effects of the different class compositions as if behaviors 

stemming from dispersion of ages at the class level were fixed. So, for example, the marginal effect of a 

change in the percentage of below reference age students should not capture the peer effects stemming from 

changing the class age structure (which is being held fixed) but peer effects stemming from a change in the 

structure of peers’ past academic experience.21 

Finally, 𝐺𝑖 is a grade dummy variable (note that equation (1) is estimated using a pooled sample of 

students of the 6th and 9th grades) which accounts for eventual grade specific features correlated with both the 

students’ outcomes and the composition of the classes of a given grade. 

To allow the marginal effects of the class compositional variables to be heterogeneous according to 

students’ individual characteristics we consider an alternative model allowing for interactions between each 

class composition variable and the corresponding individual characteristic. More precisely, we specify the 

model as: 

𝑌𝑖 = 𝛽0 + [%𝐻𝑖𝑔ℎ 𝐴𝑐ℎ𝑖𝑒𝑣𝑒𝑟𝑠𝑖,(−𝑖) ∗ 𝕀𝐿𝑜𝑤 𝐴𝑐ℎ𝑖𝑒𝑣𝑒𝑟𝑖=1]𝛽1
𝐿𝑜𝑤 + 

                 [%𝐻𝑖𝑔ℎ 𝐴𝑐ℎ𝑖𝑒𝑣𝑒𝑟𝑠𝑖,(−𝑖) ∗ 𝕀𝑀𝑖𝑑 𝐴𝑐ℎ𝑖𝑒𝑣𝑒𝑟𝑖=1]𝛽1
𝑀𝑖𝑑 + 

                 [%𝐻𝑖𝑔ℎ 𝐴𝑐ℎ𝑖𝑒𝑣𝑒𝑟𝑠𝑖,(−𝑖) ∗ 𝕀𝐻𝑖𝑔ℎ 𝐴𝑐ℎ𝑖𝑒𝑣𝑒𝑟𝑖=1]𝛽1
𝐻𝑖𝑔ℎ

+ 

                 [%𝐵𝑒𝑙𝑜𝑤 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝐴𝑔𝑒𝑖,(−𝑖) ∗ 𝕀𝐵𝑒𝑙𝑜𝑤 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝐴𝑔𝑒𝑖=1]𝛽1
𝐵𝑒𝑙𝑜𝑤 + 

                 [%𝐵𝑒𝑙𝑜𝑤 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝐴𝑔𝑒𝑖,(−𝑖) ∗ 𝕀𝐴𝑏𝑜𝑣𝑒 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝐴𝑔𝑒𝑖=1]𝛽1
𝐴𝑏𝑜𝑣𝑒 + 

                 [%𝑀𝑎𝑙𝑒𝑠𝑖,(−𝑖) ∗ 𝕀𝑀𝑎𝑙𝑒𝑖=1]𝛽1
𝑀𝑎𝑙𝑒 + 

                 [%𝑀𝑎𝑙𝑒𝑠𝑖,(−𝑖) ∗ 𝕀𝐹𝑒𝑚𝑎𝑙𝑒𝑖=1]𝛽1
𝐹𝑒𝑚𝑎𝑙𝑒 + 

                 [%𝐹𝑜𝑟𝑒𝑖𝑔𝑛𝑒𝑟𝑠𝑖,(−𝑖) ∗ 𝕀𝐹𝑜𝑟𝑒𝑖𝑔𝑛𝑒𝑟𝑖=1]𝛽1
𝐹𝑜𝑟𝑒𝑖𝑔𝑛𝑒𝑟

+ 

                                                                                                                                                                                
parents’ ability and willingness to place their children on the “best” school and then to informally bargain within the 

school for the “best” class. 
20 See Section 3 for details about these control dummies. 
21 As the percentage of below reference age students increases, also, on average, the class age dispersion decreases. 

Nevertheless, this is not a one-to-one relationship. Some classes have a relatively high age dispersion but with few 

above reference age students (classes with students that entered the education system really early – 5 years old – 

alongside others that entered it aged almost 7 years-old and both groups never experiencing retention). And, on the 

other hand, classes with many students above the reference age whose ages are aligned, i.e. with a relatively small class 

age dispersion. 
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                 [%𝐹𝑜𝑟𝑒𝑖𝑔𝑛𝑒𝑟𝑠𝑖,(−𝑖) ∗ 𝕀𝑁𝑜𝑛 𝐹𝑜𝑟𝑒𝑖𝑔𝑛𝑒𝑟𝑖=1]𝛽1
𝑁𝑜𝑛 𝐹𝑜𝑟𝑒𝑖𝑔𝑛𝑒𝑟

+ 

                 [%𝐼𝑛𝑡𝑒𝑟𝑛𝑒𝑡𝑖,(−𝑖) ∗ 𝕀𝐼𝑛𝑡𝑒𝑟𝑛𝑒𝑡𝑖=1]𝛽1
𝐼𝑛𝑡𝑒𝑟𝑛𝑒𝑡 + 

                 [%𝐼𝑛𝑡𝑒𝑟𝑛𝑒𝑡𝑖,(−𝑖) ∗ 𝕀𝑁𝑜 𝐼𝑛𝑡𝑒𝑟𝑛𝑒𝑡𝑖=1]𝛽1
𝑁𝑜 𝐼𝑛𝑡𝑒𝑟𝑛𝑒𝑡 +  

                 [%𝐿𝑜𝑤 𝐼𝑛𝑐𝑜𝑚𝑒𝑖,(−𝑖) ∗ 𝕀𝐿𝑜𝑤 𝐼𝑛𝑐𝑜𝑚𝑒𝑖=1]𝛽1
𝐿𝑜𝑤 𝐼𝑛𝑐𝑜𝑚𝑒 + 

                 [%𝐿𝑜𝑤 𝐼𝑛𝑐𝑜𝑚𝑒𝑖,(−𝑖) ∗ 𝕀𝑁𝑜𝑛 𝐿𝑜𝑤 𝐼𝑛𝑐𝑜𝑚𝑒𝑖=1]𝛽1
𝑁𝑜𝑛 𝐿𝑜𝑤 𝐼𝑛𝑐𝑜𝑚𝑒 + 

        𝑪𝒊
′𝜷𝟐 + 𝑿𝑖

′𝜷𝟑 +  𝛾𝐺𝑖 +  𝑺𝑖
′𝜶 + 𝜀𝑖 

or more compactly by: 

𝑌𝑖 = 𝛽0 + [𝑪𝒐𝒎𝒑𝒊,(−𝒊)
′ ∗ 𝕀𝑿𝒊=𝟏]𝜷𝟏

𝑿𝒊=𝟏
+ [𝑪𝒐𝒎𝒑𝒊,(−𝒊)

′ ∗ 𝕀𝑿𝒊=𝟎]𝜷𝟏
𝑿𝒊=𝟎

+ 

        𝑪𝒊
′𝜷𝟐 + 𝑿𝑖

′𝜷𝟑 +  𝛾𝐺𝑖 +  𝑺𝑖
′𝜶 + 𝜀𝑖                                                                                        (2) 

where 𝕀 denotes an indicator function. That is, we assess how a (leave-out) percentage of a given type of 

student in a class (i.e. 𝑪𝒐𝒎𝒑𝒊,(−𝒊)) affects the student of that type (when 𝕀𝑿𝒊=𝟏 takes the value one) and the 

student of the other type (when 𝕀𝑿𝒊=𝟎 takes the value one). For example, in this model, the in-class (leave-

out) percentage of males may impact differently on male (𝕀𝑀𝑎𝑙𝑒𝑖=1 takes the value one) or female 

(𝕀𝐹𝑒𝑚𝑎𝑙𝑒𝑖=1 takes the value one) students. 

The models in equations (1) and (2) rely on numerous control variables offered by the dataset to 

reduce possible endogeneity biases that could plague the estimates of the true class compositional effects. 

However, given what was argued in Section 2 and given the suggestive evidence shown in Section 3, we 

consider there is the chance for class size to be the within-school driver of endogeneity. In such case, an 

ordinary least squares (OLS) estimation of the previous models may still result in biased estimates despite 

the many controls used in the regressions. Hence, we also estimate the model in equation (2) using an 

instrumental variables (IV) approach. The class size is instrumented with school-grade average class size 

following Jürges & Schneider (2004), Wößmann & West (2006) and West & Wößmann (2006). We employ 

this IV estimation as a robustness check. If the class compositional variables correlate with the possibly 

endogenous class size variable (which they somewhat do) then the possible endogeneity of the latter may 

affect the correct estimation of the effects of the formers. 

Regarding the two necessary requirements for this instrument to hold valid, we can say that, on one 

hand, grade-school average class size must be correlated with the actual class sizes that compose that grade. 

After all, even though schools may sort weaker students to shorter classes in a given grade, it must be the 

case that schools that have relatively more students must sort them to shorter classes that are relatively more 

populated than shorter classes of less populated grades-schools. Given that schools must obey certain 

national level rules regarding class formation and face, at each academic year, at each grade, specific cohorts 

with a given size, then, conditional on additive grade and school fixed effects (the latter capturing school 

specific rules or resources correlated with the number of classes opened and school specific levels of 

enrolment) variations on the grade-school average class size should reflect exogenous demographic 

variations of the respective cohort in the area of influence of the school. On the other hand, as it is put by 
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Wößmann & West (2006), the exclusion condition of the instrument is likely to hold too: “There is also no 

reason to expect that the average class size would affect the performance of students in a specific class in 

any other way than through its effect on the actual size of the class of the students.” (p. 700).  

The first stage of the IV estimation consists in estimating the following equation that predicts 𝐶𝑆𝑖, the 

class size for each individual i: 

𝐶𝑆𝑖 = 𝑏0 + [𝑪𝒐𝒎𝒑𝒊,(−𝒊)
′ ∗ 𝕀𝑿𝒊=𝟏]𝒃𝟏

𝑿𝒊=𝟏
+ [𝑪𝒐𝒎𝒑𝒊,(−𝒊)

′ ∗ 𝕀𝑿𝒊=𝟎]𝒃𝟏
𝑿𝒊=𝟎

+ 𝑪𝒊
′𝒃𝟐 + 

           𝑏𝐶𝑆̅̅̅̅ 𝐶𝑆̅̅̅̅
𝑖 + 𝑿𝑖

′𝒃𝟑 + 𝑔𝐺𝑖 + 𝑺𝑖
′𝒂 + 𝑒𝑖                                                                                   (3) 

with 𝐶𝑆̅̅̅̅
𝑖 representing the (excluded) instrument – student’s i school-grade average class size. Note that to 

avoid perfect collinearity, between the instrument and the school fixed effects in this first stage regression, 

one has to pool both 6th and 9th grades’ samples and make sure that each school “contributes” with, at least, 

two classes – one class from each of the two grades. As discussed in Section 3, our sample satisfies this 

requirement. 

A comparison of the OLS and IV versions of model (2), detailed in the next section, will provide 

evidence of no significant differences of the class compositional coefficients between them. We take this as 

evidence that the OLS version delivers estimates of the class compositional effects free of endogeneity 

contamination bias stemming from the possibly endogenous class size variable. We, thus, proceed with the 

OLS estimation of model (2) for each sample of 6th and 9th graders, separately, with the intention of 

disentangling possible differences between class compositional effects at different ages.22 

In the next section we present the estimation results of the models that pool both grades’ samples and 

of the models that separate each sample of 6th and 9th graders. 

5 Estimation Results 

5.1 Results for pooled 6th and 9th grades’ models 

Table 2 provides, for both measures of achievement, the OLS results of model in equation (1) above. 

Column (1) presents the results of a simple specification of model (1), where only student and teacher 

between-school sorting is controlled for (via school fixed effects), and only two class compositional 

variables – (leave-out) percentage of high and low achievers – are included along with class size. These two 

compositional measures are the ones that relate more closely to what the literature defines as class student 

“quality”. Then, column (2) adds the full set of individual student level controls which aim to account for 

student within-school sorting. The final column (3) adds the remaining class compositional measures which 

further alleviate possible confounding treatment effects, thus improving the ceteris paribus interpretation of 

each of the estimated compositional coefficients. 

Indeed, the coefficients attached to the proportion of high and low achievers suffer significant changes 

(both in sign and magnitude) as each set of control and treatment variables are consecutively added. In turn, 

the estimated effect of class size changes from statistically significant and positive to non-significant.  

                                                      
22 The grade fixed effect is taken out from these grade specific models to avoid collinearity with the intercept. 
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Table 2 Estimation results using as outcomes the national exam scores in Mathematics and Reading 

Explanatory Variables 

 
Pooled Grades 

 
OLS 

 
(1)   (2)   (3) 

 
Mathematics Reading 

 
Mathematics Reading 

 
Mathematics Reading 

% High Achievers 
 

0.0080*** 0.0110*** 
 

-0.0026*** 0.0005 
 

-0.0045*** -0.0015*** 

% Low Achievers 
 

-0.0078*** -0.0073*** 
 

-0.0005 -0.0014** 
 

0.0013** 0.0003 

% Below Reference Age 
 

-- -- 
 

-- -- 
 

0.0027*** 0.0021*** 

% Males 
 

-- -- 
 

-- -- 
 

0.0001 -0.0005 

% Foreigners 
 

-- -- 
 

-- -- 
 

-0.0010 -0.0031** 

% Internet 
 

-- -- 
 

-- -- 
 

0.0009*** 0.0007*** 

% Low-Income 
 

-- -- 
 

-- -- 
 

-0.0033*** -0.0023*** 

Age Dispersion 
 

-- -- 
 

-- -- 
 

-0.087*** -0.050* 

Class Size 
 

0.017*** 0.017*** 
 

0.006*** 0.004*** 
 

0.002 0.001 

Below Reference Age 
 

-- -- 
 

0.42*** 0.37*** 
 

0.41*** 0.37*** 

Male 
 

-- -- 
 

-0.08*** -0.22*** 
 

-0.08*** -0.22*** 

Foreigner 
 

-- -- 
 

-0.05** -0.06*** 
 

-0.05*** -0.06*** 

Internet 
 

-- -- 
 

0.10*** 0.08*** 
 

0.10*** 0.08*** 

Low-Income 
 

-- -- 
 

-0.14*** -0.11*** 
 

-0.14*** -0.10*** 

Baseline Score Dummies 
 

-- -- 
 

✓ ✓


✓ ✓

Parent Education Dummies 
 

-- -- 
 

✓ ✓


✓ ✓

Grade Fixed Effects 
 

✓ ✓


✓ ✓


✓ ✓

School Fixed Effects 
 

✓ ✓


✓ ✓


✓ ✓

Adjusted R2 
 

9.8% 7.1% 
 

49.7% 43.9% 
 

50.0% 44.1% 

N   112,417 111,961   99,899 99,562   97,405 97,024 

Notes: Significance levels: * p<.10, ** p<.05, *** p<.01. Robust standard errors clustered at the class level. Each outcome variable was standardized to have 

mean zero and std. dev. of one. Each model also contains dummies equal to 1 if student i peers' measures were computed using partial class information, i.e. if 

one, two or three classmates of i had missing information about their baseline scores or their place of birth. The class composition variables (i.e. the percentages 

of classmates of student i with a given characteristic) were computed in a leave-out fashion, i.e. excluding student i. Each model contains an intercept and pools 

students from grades 6 and 9. Only classes with 14 or more students were used and they had to belong to schools with at least one class of grade 6 and, 

simultaneously, another of grade 9 (i.e. each school contributed with at least two classes). 

 

When we allow for heterogeneous class compositional marginal effects, corresponding to the model in 

equation (2), Table 3, column 1, the picture does not change considerably, regarding the non-significant 

effect of class size.23 Overall, these changes demonstrate the importance of controlling for within-school 

sorting of students and for possible confounding treatment effects, which improve the causal interpretation of 

the class compositional effects.  

In spite of the fact that we do not observe, in line with Hoxby (2000b), a statistically significant 

negative effect for class size even if it may be structurally small (Bosworth, 2014) or require large class size 

variations to be captured (Duflo, Dupas & Kremer, 2015), it may also mean that the class size coefficient 

may still be plagued by endogeneity bias. Recall that, as discussed in Section 4, this may cause the class 

compositional coefficients – the ones of interest for this paper – to also be biased, which, coupled with the 

suspicion that class size is the within-school driver of endogeneity, justifies our choice to be conservative. 

The use of the IV estimator to estimate equation (2) provides then a robustness check against this possibility. 

Before presenting the second stage estimation results, we discuss next two points worth of mention regarding 

the results of the first stage of the corresponding 2SLS procedure (see Appendix A.4).  

                                                      
23 One would expect the class size effect to be detectable once sorting of students and confounding class level 

treatments are taken into account. Nevertheless, we do not observe it. In reality, the class size effect may not exist or if 

it does exist it may simply be small in magnitude and difficult to detect. For example, it may be the case that, contrary 

to Lazear (2001), students tend to disrupt classes with some degree of synchronization, thus diminishing its potential 

negative effects. Or it may be necessary to record greater class size variation in absolute terms (greater than from 14 to 

31 pupils as we observe in our data) to capture a significant effect, like Duflo, Dupas & Kremer (2015) do (they observe 

classes halving from 80 to 40 students). 
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First, many of the individual and class compositional variables statistically significantly predict class 

size, at least at the 5% level. This reinforces the idea that, indeed, the class size each student experiences 

might be determined by his/her own characteristics (via purposeful within-school sorting). And it also 

confirms that at least some of the class compositional treatments are, in fact, related to class size, hence it is 

advisable to jointly include them in the educational production function. 

Secondly, and more importantly, the (excluded) instrument – grade-school average class size – 

statistically significantly predicts class size (at the 1% level) even after “partialling-out” what the other 

regressors can explain about the variation of class size. Especially after what grade and school effects explain 

about class size, which means that the instrument should account for grade by school specificities like 

exogenous cohort variation of 6th and 9th graders around the influence area of the school. In turn, the usual 

first stage F-statistic testing the significance of the excluded instruments (which here is just one) is well 

above the rule of thumb of 10, hence the instrument is not weak. 

The IV estimation results, which are the second stage results of the 2SLS procedure, are shown in 

column (2) of Table 3. The signs and magnitudes of the estimated coefficients are quite similar to those 

obtained by OLS in column (1). The exceptions are mild changes in the coefficients of class size and class 

age dispersion for the reading specification which turn negative and significant at the 5% and 10% levels, 

respectively. The change of the class size coefficient is expectable assuming that class size may still be 

plagued, to some degree, by endogeneity and the instrument is valid.24 We conduct a Durbin-Wu-Hausman 

test to formally assess if, under the hypothesis that the instrument is valid, there is evidence of endogeneity, 

i.e. that the estimates of the 2SLS are statistically significantly different from the ones obtained by OLS. This 

test is presented at the bottom of Appendix A.4. For mathematics we fail to reject the null of exogeneity, 

whereas for reading we reject it at the 1% level of significance.25 All in all, there is no evidence that possible 

endogeneity of class size, especially with respect to the reading specification, is contaminating the estimates 

of the class compositional variables in column (1) of Table 3 as all class compositional estimates do not 

change considerably when instrumenting class size or not. We then conclude that the estimation results of the 

model in equation (2) are reliable causal estimates of the class composition effects. 

                                                      
24 This result differs from Wößmann & West (2006) who find that class size, for Portuguese students, has a significant 

positive coefficient on mathematics using TIMSS database and the same econometric methodology. However, the fact 

that our estimate for class size with respect to the math specification started as significantly positive in the simplest 

model in column (1), Table 2, and then turned non-significant by column (2) of Table 3, comes in line with their overall 

results. As they include school fixed effects and instrument class size with school-grade average class size they also 

observe the same movement of the class size coefficient: from significant positive to non-significant and from non-

significant to significant negative, in general. In turn, Akerhielm (1995) finds class size having a non-significant effect 

for mathematics (as we do) as well as for reading. 
25 Since reading and mathematics is taught to the same class these results suggest that there are different endogeneity 

biases associated to class size estimates across different subjects. That is, across subjects there may be considerable 

differences in the way the same input impacts on the corresponding achievement level. In this case it may be that 

smaller classes are relatively more incremental to reading than to mathematics. Students may be more dependent of 

what is discussed in-class in reading as it may be a subject of a more communicative nature and suffer more with larger 

and more disruptive classes. 
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Table 3 Estimation results using as outcomes the national exam scores in Mathematics and Reading 

Explanatory Variables 

 
 Pooled Grades     6th Graders' Sample     9th Graders' Sample  

 
 OLS  

 

 IV (2nd Stage)  
 

 OLS  

 

 OLS  

 
(1) 

 

(2) 
 

(3) 
 

(4) 

 
Mathematics Reading 

 

Mathematics Reading 
 

Mathematics Reading 
 

Mathematics Reading 

% High Achievers × { 
Low Achiever 

 
-0.0024*** -0.0023 

 

-0.0024*** -0.0022 
 

-0.0025** -0.0018 
 

-0.0008 -0.0014 

Middle Achiever 
 

-0.0041*** -0.0011** 

 

-0.0041*** -0.0010* 
 

-0.0040*** -0.0020*** 
 

0.0020** 0.0010 

High Achiever 
 

-0.0064*** -0.0033*** 

 

-0.0064*** -0.0033*** 
 

-0.0054*** -0.0028*** 
 

0.0003 -0.0017 

% Low Achievers × { 
Low Achiever 

 
0.0016** -0.0048*** 

 

0.0016** -0.0051*** 
 

0.0026** -0.0040** 
 

-0.0009 -0.0071 

Middle Achiever 
 

0.0012** 0.0008 

 

0.0011** 0.0006 
 

0.0021*** 0.0014* 
 

-0.0025*** -0.0000 

High Achiever 
 

0.0029*** 0.0003 

 

0.0029*** -0.0001 
 

0.0024* 0.0047*** 
 

0.0020 0.0033 

% Below Reference Age × { 
Below Reference Age 

 
0.0035*** 0.0029*** 

 

0.0035*** 0.0031*** 
 

0.0037*** 0.0026*** 
 

0.0025*** 0.0038*** 

Above Reference Age 
 

-0.0006 -0.0003 

 

-0.0005 -0.0001 
 

-0.0011 -0.0008 
 

-0.0008 0.0010 

% Males × { 
Male 

 
0.0005 0.0002 

 

0.0005 0.0002 
 

0.0011** 0.0001 
 

0.0003 0.0011* 

Female 
 

-0.0003 -0.0011*** 

 

-0.0003 -0.0011*** 
 

0.0001 -0.0007 
 

-0.0001 -0.0005 

% Foreigners × { 
Foreigner 

 
0.0037 -0.0077** 

 

0.0037 -0.0076** 
 

0.0047 -0.0090** 
 

0.0066 -0.0032 

Non-Foreigner 
 

-0.0012 -0.0030** 

 

-0.0012 -0.0031** 
 

0.0004 -0.0007 
 

-0.0007 -0.0036** 

% Internet × { 
Internet 

 
0.0011*** 0.0006** 

 

0.0011*** 0.0007** 
 

0.0015*** 0.0013*** 
 

0.0007 0.0004 

No Internet 
 

0.0005 0.0008** 

 

0.0005 0.0008** 
 

0.0008* 0.0012*** 
 

-0.0010* -0.0004 

% Low-Income × { 
Low-Income 

 
-0.0025*** -0.0026*** 

 

-0.0025*** -0.0027*** 
 

-0.0026*** -0.0027*** 
 

-0.0017*** -0.0007 

Non-Low-Income 
 

-0.0039*** -0.0020*** 

 

-0.0039*** -0.0021*** 
 

-0.0046*** -0.0025*** 
 

-0.0022*** -0.0005 

Age Dispersion 
 

-0.070** -0.036 

 

-0.071** -0.044* 
 

-0.032 -0.056* 
 

-0.082* -0.100** 

Class Size 
 

0.002 0.000 

 

0.001 -0.007** 
 

0.002 0.003 
 

-0.001 0.003 

Below Reference Age 
 

✓ ✓



✓ ✓


✓ ✓


✓ ✓

Male 
 

✓ ✓



✓ ✓


✓ ✓


✓ ✓

Foreigner 
 

✓ ✓



✓ ✓


✓ ✓


✓ ✓

Internet 
 

✓ ✓



✓ ✓


✓ ✓


✓ ✓

Low-Income 
 

✓ ✓



✓ ✓


✓ ✓


✓ ✓

Baseline Score 
 

✓ ✓



✓ ✓


✓ ✓


✓ ✓

Parent Education Dummies 
 

✓ ✓



✓ ✓


✓ ✓


✓ ✓

Grade Fixed Effects 
 

✓ ✓



✓ ✓


-- -- 
 

-- -- 

School Fixed Effects 
 

✓ ✓



✓ ✓


✓ ✓


✓ ✓

Adjusted R2 
 

50.1% 44.2% 

 

50.1% 44.2% 
 

53.2% 46.7% 
 

49.8% 43.8% 

N   97,405 97,024   97,405 97,024   59,345 59,098   38,023 37,888 

Notes: Significance levels: * p<.10, ** p<.05, *** p<.01. Robust standard errors clustered at the class level. Each outcome variable was standardized to have mean zero and std. dev. of one. Each model also contains dummies equal to 1 if 
student i peers' measures were computed using partial class information, i.e. if one, two or three classmates of i had missing information about their baseline scores or their place of birth. The class composition variables (i.e. the percentages of 

classmates of student i with a given characteristic) were computed in a leave-out fashion, i.e. excluding student i. Each model contains an intercept. Models of columns (1) and (2) pool students from grades 6 and 9, while those of columns (3) 

and (4) separate them. Only classes with 14 or more students were used and they had to belong to schools with at least one class of grade 6 and, simultaneously, another of grade 9 (i.e. each school contributed with at least two classes). The 

model of column (2) reports the second stage IV estimates of equation (2), see Section 4 in the text; the corresponding first stage output can be found in Appendix A.4. 
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5.2 Results for separate 6th and 9th grades’ models 

The estimation results of the model in equation (2) applied separately to the 6th and 9th grades samples are 

presented in Table 3, columns (3) and (4), respectively. We assume that the evidence in favor of the no endogeneity 

bias contamination provided by the comparison of the pooled sample estimates of columns (1) and (2) of Table 3 

extends to the 6th and 9th grades samples’ estimates of columns (3) and (4) since, as explained above, the IV 

procedure cannot be implemented when estimating separate models for each of the grades. However, since actual 

classes belong uniquely to a 6th or a 9th grade it is more valuable from a policy perspective to analyze in detail grade 

specific class compositional effects rather than composite ones that mix the specific effects of both grades. 

The results suggest that, in mathematics, a given 6th grader is harmed when facing a higher percentage of 

high achievers in his/her class. This negative effect increases in magnitude as that given 6th grade student is defined 

as a better performer (i.e. as his/her baseline score is higher), see column (3) of Table 3. An increase of 20 

percentage points (p.p.) of high achievers in his/her class (about 4 more high achievers and 4 less middle achievers 

in an average sized class of 20) leads to a loss in performance of 5%26, 8% and 10.8% of a SD, depending if he/she 

is defined as a low, middle or high performer, respectively. In turn, for reading the respective values are 0% (not 

significant), 4%, and 5.6% of a SD, hence the same pattern is observed. 

In turn, the percentage of low achievers deliver opposite results, in general. An increase of 20p.p. of low 

achievers leads to a statistically significant gain in mathematics performance around 4% to 5% of a SD, whether 

he/she is defined as a low, middle or high performer in the 6th grade. On the other hand, looking at the reading 

specification, positive variations in the proportion of low achievers negatively affect those 6th graders that are 

themselves low achievers: 20p.p. more low achievers translates to a loss of about 8% of a SD. The same increment 

of low achievers produces a gain to middle and high achievers of about 2.8% and 9.4% of a SD, respectively. 

Next, the impact of increasing by 20p.p. the percentage of below reference age classmates (which is the 

reciprocal of a 20p.p. decrease in the percentage of students above the reference age) is to increase the achievement 

of 6th graders that are below the reference age ranging from 5.2% to 7.4% of a SD, depending on the subject we 

look at. Students above the reference age, i.e. with at least one retention in their past schooling trajectory, have no 

statistical evidence of being affected in any particular direction by the proportion of students below or above the 

reference age. 

Sixth grade males seem to partially benefit from being exposed to a higher concentration of males, whereas 

for females there is no statistical evidence supporting any effect. In fact, for males, the effect of sharing the class 

with an increasing proportion of other males, with respect to mathematics achievement, is statistically significant 

(at 5% level) but small: their performance level rises by 2.2% of a SD given an increase of 20p.p. in the percentage 

of male classmates. Nevertheless, this effect vanishes when looking at the 6th grade reading specification. 

                                                      
26 These values result from multiplying by 20 p.p. the respective estimate of the marginal effect of the class compositional 

variables (which are measured in percentage points). For example,  0.05 = 0.0025 ∗ 20, i.e. 0.05 standard deviations (SD) or, 

equivalently, 5% of a SD. 
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As in the previous case we only observe one particular significant effect regarding the impact of the in-class 

percentage of foreigners on 6th grade achievement. It is found on the reading specification: 6th graders who are 

themselves foreigners are harmed by larger shares of foreign classmates. This effect is around 4.5% of a SD given 

an increase of 5p.p.27 in the percentage of students born abroad. Regarding mathematics, no significant effects are 

found relative to this compositional dimension for this grade. 

One can notice, as well, that varying the proportion of students with home access to the internet, in a given 

class, seems to positively (but weakly) affect 6th grade students. The gain in having more 20p.p. in the percentage 

of classmates with internet varies from 1.6% to 3% of a SD, depending on subject and whether the student has 

internet at home or not. 

Finally, sixth graders seem to be hurt with larger shares of low-income classmates. A 20p.p. increase in the 

proportion of low-income students, in a given 6th grade class, hampers the performance of a given low-income 

student from that class by about 5.3% of a SD, in both subjects; and that of a given non-low-income student from 

that class by 5% to 9.2% of a SD, depending on subject. 

 The estimation results concerning 9th grade students (Table 3, column 4) interestingly reveal that only 

approximately half of the considered class compositions have a statistical significant effect compared to those that 

have a significant effect on 6th grade students. In other words, it seems that class compositional effects seem to be 

less relevant explaining 9th grade achievement variation.28 Nevertheless, there still remain a few important class 

compositional dimensions that deliver significant effects.  

Both specifications of mathematics and reading for 9th graders present a similar pattern to those for 6th 

graders with respect to the marginal effects of the percentage of below reference age classmates. The impact of 

increasing by 20p.p. the percentage of below reference age classmates is to improve the achievement of 9th grade 

pupils that are themselves below the reference age by the same order of magnitude as for 6th graders. Ninth grade 

above the reference age students again have no statistical evidence of being affected in any particular direction by 

the proportion of students below or above the reference age. 

Also, as in the case of 6th graders, the proportion of low-income classmates hampers the performance of both 

low-income and non-low-income 9th graders. Nevertheless, these effects are only significant in the mathematics 

specification and with a lower magnitude as compared with those that were estimated for 6th graders. We also note 

that higher concentrations of low-income students seem to do more harm to mathematics than to reading 

achievement (within each grade) and to impact more heavily 6th graders rather than 9th graders (within each 

subject). 

The significant effects stemming from the 9th grade gender and foreign background class compositions are 

quite particular to the outcome variable used and the type of student, as they were with the 6th grade models. 

                                                      
27 Although a 20p.p. variation in the proportion of foreign born students, in a given class, is within its sample variation (on 

both grades) it is still quite large compared to its standard deviation. Increasing the percentage of foreign born students, in a 

given class, by 5p.p. is closer to its standard deviation, see Table 1. 
28 We note that it is likely that as students get older their true network of peers may tend to substantially differ from the peers 

they have as classmates as a consequence of a more salient self-selection onto specific groups of peers. That is, the group of 

classmates, at more advanced grades, may be a noisy measure of the actual peer group each student interacts with. 

Consequently, it may not surprise that older students seem more insensitive to the composition of the class. 
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However, a common pattern seems to arise: the proportion of males seems to be beneficial for 9th grade males (as it 

was in the 6th grade), and the proportion of foreigners seems to be harmful with respect to reading achievement (as 

it was in the 6th grade). 

The effect of the percentage of 9th grade classmates with internet at home differs from the one for 6th graders: 

the formers seem insensitive to this compositional dimension and in one case it is even negative, but faintly 

significant. Ninth graders with no internet at home are estimated to be slightly harmed as the proportion of 

classmates with internet at home increases. 

Perhaps, the results related with the impact of high and low achievers on 9th grade classmates are the ones 

most markedly different from the results using the 6th grade sample. Ninth grade middle achievers are estimated to 

be significantly leveraged (around 4% of a SD) in mathematics given an increase of 20p.p. of the percentage of 

high achieving classmates. On the other hand, those same 9th grade middle achievers are harmed (around 5% of a 

SD) given the same increase of the proportion of low achieving classmates. The 9th grade reading specification 

yields no significant results which also contrasts with the respective 6th grade specification. 

Lastly, the effect of the class age dispersion is more salient for 9th graders. Across both outcomes’ 

specifications the effect is more significant and larger in magnitude than for 6th graders. Increasing the age 

difference (in absolute value) between the classmates of a 9th grade class and the corresponding class’ average age 

by 0.2 years (its sample standard deviation) it is estimated that achievement falls by 1.6% to 2% of a SD, 

depending on subject. 

6 Discussion 

Looking back at what has been reported by the literature (e.g. Sacerdote, 2011), the empirical findings 

concerning the impact of high and low achievers can be seen as odd, in particular those related with 6th graders. 

Duflo, Dupas & Kremer (2011) indicate that tracking students according to their levels of achievement delivered 

the best outcomes; nevertheless, we observe the contrary. High achieving 6th graders break the tracking hypothesis 

as they have their outcomes negatively associated with an increasing proportion of other high achievers (in both 

subjects, but especially in mathematics where it reaches a sizeable effect of 10.8% of a SD). Low achievers of that 

same grade only report to profit out of an increasing proportion of other low achievers (hence supporting tracking) 

for mathematics. The tracking hypothesis, again, fails in reading for 6th grade low achievers – in face of more low 

achieving classmates they record a sizeable and precise negative effect of 8% of a SD. Hoxby (2000a), Hanushek et 

al. (2003) and Sund (2009) point to gains in achievement by the average student from having better peers (as 

measured by higher current or prior peer achievement levels) or, conversely, to losses from having weaker peers. 

Our results show that this is only fully observed for 9th grade middle achievers in mathematics. Although those 

authors can control for teacher heterogeneity which we can only partially here, they include less class 

compositional dimensions than we do. Still, if our results indeed incorporate possible bias associated with non-

random teacher sorting within-schools then this is a rather strong confounding effect, at least for 6th graders. 

However, our results regarding 6th graders align somewhat with recent research – Burke & Sass (2013) – which 

documents that increasing too much class peer quality leads to a decrease in performance by the average student. 
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The fact that 9th graders do not seem to follow this pattern – they seem to fit better within the view that 

proportionally more high achievers (or less low achievers) improves educational achievement, at least in 

mathematics – may point to important differences in the way classmates interact with each other (and even with the 

teacher as a group) as they progress in age. 

Looking at class gender composition its most precise estimate reveals that 6th grade males achieve slightly 

more in mathematics’ national exams when placed in classes populated by relatively more males. This deviates 

from Hoxby (2000a) who estimates that relatively more females in the respective cohort help both males and 

females in mathematics. She also finds that larger shares of females help in reading achievement which contrasts 

with our faintly significant positive effect for 9th grade males of having more male classmates. In turn, she 

documents that peer effects are stronger and beneficial within cultural groups and our results align with her 

partially. Indeed, looking at the 6th grade sample, the effect of increasing the proportion of students with a foreign 

country cultural background is strong for those within that cultural group. But it is negative, not positive. 

Moreover, looking at the 9th grade sample, we observe that the unique significant effect is across cultural groups 

and negative. 

Contrary to our results in Table 3 regarding the proportion of low-income classmates, Hanushek et al. (2003) 

reported evidence not supporting the view that lower income peers harm achievement. They argued that eligibility 

to a reduced-price lunch is a noisy measure of actual income differences which could in part explain their findings. 

Even if our binary variable flagging low-income students incorporates some measurement error we see our results 

as evidence that indeed low-income classmates have a detrimental effect on achievement, especially in 

mathematics (both grades) and on 6th graders (both subjects). We argue that the statistically significant results from 

Table 3 are then, in the worst-case scenario, lower bounds of the absolute value of the true effect of low-income 

classmates due to attenuation bias. 

7 Policy Implications 

So far, we detailed and discussed the estimated effects of several class compositional dimensions. We now 

provide policy implications based on those that seem to have the largest impact at improving overall education 

achievement. 

It is important to recognize first, however, that distributing a potentially positive educational input (e.g. 

classmates with characteristics that facilitate classroom learning) across classes seems fairer from the perspective of 

equality of opportunity, that is, of not letting particular groups of pupils be denied exposure to it. In turn, 

distributing potentially negative inputs (such as classmates who tend to disrupt the classroom) can be defended by 

the symmetric argument of not letting particular groups of pupils be over exposed to it. One such case is the 

distribution of high and low achievers across 6th grade classes. That is, taking our results at face value, it should be 

fairer to target heterogenous 6th grade classes, contrary to what Collins & Gan (2013) point, since those types of 

classmates seem to act, respectively, as negative and positive inputs, at least to the majority of students. For 9th 

graders, class heterogeneity seems also the fairest since high and low achievers still affect achievement in contrary 

directions: the proportions of high and low achievers act as positive and negative inputs, respectively. In other 
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words, both 6th and 9th grade classes of a given school should not deviate, in terms of the proportions of high and 

low achievers, from the respective proportions observed in that given school-grade population. Otherwise would 

signal the existence of groups of pupils placed in classes under or over exposed to these particular positive or 

negative inputs. The same reasoning must be applied to the class level proportion of low-income pupils. This input 

has been estimated as being harmful to both low and non-low-income students of both grades hence it should be 

socially fairer to evenly spread low-income students across all classes of a given school-grade. Again, each class 

should reflect the heterogeneity of low and non-low-income students found at the respective school-grade 

population. 

Finally, the proportion of students, in a given class, below or above the reference age is the class 

compositional dimension that calls for homogeneity. According to the estimates, tracking and grouping students 

below the reference age in the same class should increment achievement for those that are themselves below the 

reference age. At the same time, tracking students above the reference age to other distinct classes should not bring 

any positive nor negative effect upon them. Tracking students whether their current age is below or above the grade 

reference age should also capitalize on the positive effect of a smaller class age dispersion (especially for 9th grade 

classes). 

In a nutshell, we report here evidence that seems to support the tracking of students merely along the past 

retention dimension as an educational efficiency improving policy, whereas along all the other dimensions it seems 

socially fairer to reflect school-grade population heterogeneity. As a comparison, reducing class size by 4 

(comparable to the hypothetical 20p.p. variations of each class compositional variable with respect to an average 

sized class of 20 as performed in Section 5) entails a performance gain in reading29 of 2.8% of a SD which is lower 

than many of the effects of class compositional variations discussed earlier. That is, class compositional 

rearrangement is estimated to provide, in some dimensions, a larger performance improvement than comparable 

variations of class size. On top of this it is necessary to add that class compositional rearrangement should be cost-

benefit superior to cutting class size as rearranging the composition of the classes brings no financial costs to 

schools, whereas class size reduction implies, in principle, hiring extra teachers with its associated costs. 

8 Conclusion 

Exploiting a relatively recent Portuguese educational micro dataset, in particular its 6th and 9th grades’ 

samples of students enrolled in public schools in the 2011-12 academic year, this paper documents evidence 

supporting: 1) the existence of relevant class compositional effects, 2) the heterogeneity of these effects with 

respect to students’ individual characteristics and 3) grade and subject specific differences of the class 

compositional effects. We list the class compositional measures related to the proportion of high and low achievers, 

the proportion of students below or at the reference age, and the proportion of students belonging to low-income 

households as the ones more relevant for policy implications. 

                                                      
29 Looking at the best causal, statistically significant, estimate of the class size effect present in the 2SLS model of column (2) 

in Table (3). 
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We find that low, mid and high 6th grade achievers perform worse, in mathematics and reading, given an 

increase of high achieving students. These same types of 6th graders perform, in general, better, in both subjects, 

given an increase of low achieving students. In turn, we find that, contrasting with the 6th grade, the 9th grade 

middle achiever performs better in mathematics, given an increase of high achieving students. This type of 9th 

grader performs worse in mathematics, given an increase of low achieving students. A larger share of low-income 

classmates deteriorates performance levels in general. Finally, the performance of students with no prior retentions 

increments with a higher proportion of classmates who have also not been retained in the past. 

All in all, the results obtained in this paper point to the conclusion that schools have room to improve the 

composition of the classes. In general, class composition heterogeneity seems fairer from a social point of view, 

especially along specific dimensions such as the proportions of high and low achievers and of low-income students. 

That is, the composition of each class, along these dimensions, should reflect the respective school-grade 

population heterogeneity. Nevertheless, we also find evidence that tracking students according to whether they 

have recorded a retention in the past or not, that is, targeting homogeneous classes in this specific dimension, is 

incremental to performance. These are worthwhile policy implications as they entail sizeable positive increments to 

student achievement at virtually no financial cost. Contrasting to class composition rearrangement, class size 

reduction was estimated to deliver a weaker increment to performance. Given that class size reduction is likely to 

require a non-marginal financial effort from the part of the educational system, class composition rearrangement 

seems superior as an alternative policy. 
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Appendix A 

Appendix A.1. Decomposition of 6th and 9th graders according to baseline score per subject. 

6th Mathematics N Percent 

 

9th Mathematics N Percent 

Low Achievers (Baseline Score = 1 or 2) 5,416 9.12 

 

Low Achievers (Baseline Score = 1 or 2) 3,956 10.4 

Middle Achievers (Baseline Score = 3 or 4) 43,733 73.68 

 

Middle Achievers (Baseline Score = 3 or 4) 31,139 81.85 

High Achievers (Baseline Score = 5) 10,210 17.2 

 

High Achievers (Baseline Score = 5) 2,951 7.76 

Total 59,359 100 

 

Total 38,046 100 

       6th Reading N Percent 

 

9th Reading N Percent 

Low Achievers (Baseline Score = 1 or 2) 3,850 6.51 

 

Low Achievers (Baseline Score = 1 or 2) 1,236 3.26 

Middle Achievers (Baseline Score = 3 or 4) 48,902 82.73 

 

Middle Achievers (Baseline Score = 3 or 4) 33,330 87.91 

High Achievers (Baseline Score = 5) 6,360 10.76 

 

High Achievers (Baseline Score = 5) 3,346 8.83 

Total 59,112 100 

 

Total 37,912 100 

 

Appendix A.2. Descriptive statistics. 

 
   

6th Grade - Reading National Exam 
 

9th Grade - Reading National Exam 

    
N Mean Std.Dev. Min Max 

 
N Mean Std.Dev. Min Max 

In
d
iv

id
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al
 L

ev
el

 V
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s Score 
 

  59,112  59.1 15.9 1 100 
 

37,912 52.9 14.8 0 100 

Baseline Score 
 

  59,112  3.1 0.8 1 5 
 

37,912 2.8 0.7 1 5 

Reference Age 
 

  59,112  0.88 0.33 0 1 
 

37,912 0.84 0.37 0 1 

Male 
 

  59,112  0.51 0.50 0 1 
 

37,912 0.47 0.50 0 1 

Foreigner 
 

  59,112  0.01 0.12 0 1 
 

37,912 0.01 0.12 0 1 

Internet 
 

  59,112  0.60 0.49 0 1 
 

37,912 0.73 0.45 0 1 

Low-Income 
 

  59,112  0.45 0.50 0 1 
 

37,912 0.39 0.49 0 1 

Tertiary Ed. (Parent) 
 

  59,112  0.18 0.38 0 1 
 

37,912 0.17 0.37 0 1 

Secondary Ed. (Parent) 
 

  59,112  0.48 0.50 0 1 
 

37,912 0.46 0.50 0 1 

C
la

ss
 L

ev
el

 V
ar

ia
b

le
s 

% High Achievers 
 

     3,552  14 12 0 81 
 

2,336 7 8 0 53 

% Low Achievers 
 

     3,552  9 8 0 59 
 

2,336 4 5 0 36 

% Reference Age 
 

     3,552  72 16 0 100 
 

2,336 69 17 0 100 

% Males 
 

     3,552  43 12 0 79 
 

2,336 40 13 0 80 

% Foreigners 
 

     3,552  2 3 0 29 
 

2,336 1 3 0 33 

% Internet 
 

     3,552  48 23 0 100 
 

2,336 59 24 0 100 

% Low-Income 
 

     3,552  39 17 0 95 
 

2,336 34 18 0 90 

Age Dispersion 
 

     3,552  0.6 0.2 0.2 1.7 
 

2,336 0.5 0.2 0.2 1.3 

Class Size 
 

     3,552  23 3 14 31 
 

2,336 22 4 14 30 
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Appendix A.3. Distributions of class level variables - 6th grade classes on left column and 9th grade classes on right 

column. 

  

  

  

  



 

26 

 

  

  

   

  



 

27 

 

  

  

  

 

 

 

 

 

 

 

 

 

 

 

 

 



 

28 

 

Appendix A.4. First stage regression outputs using the Mathematics and Reading samples. 

Explanatory Variables 

IV (1st Stage) 

 Pooled Grades  

(1) (2) 

Mathematics Reading 

Average Class Size (excluded instrument)  0.9455714***  0.9464064*** 

% High Achievers × { 
Low Achiever  0.0108246**  0.0134733* 

Middle Achiever  0.0137038***  0.0157996*** 

High Achiever  0.004842  0.0030827 

% Low Achievers × { 
Low Achiever -0.0201416*** -0.0223342** 

Middle Achiever -0.0197364*** -0.0301222*** 

High Achiever -0.0270461*** -0.0407922*** 

% Below Reference Age × { 
Above Reference Age  0.0306045***  0.0307392*** 

Below Reference Age  0.032289***  0.0309265*** 

% Males × { 
Female -0.0015243  0.000782 

Male -0.0013183  0.0012115 

% Foreigners × { 
Non-Foreigner -0.0056713 -0.0058593 

Foreigner  0.0212817  0.0148748 

% Internet × { 
No Internet  0.0016562  0.0014092 

Internet  0.0023914  0.0022271 

% Low-Income × { 
Non-Low-Income -0.0019125 -0.0025982 

Low-Income -0.0045517 -0.0047458* 

Age Dispersion -1.087461*** -1.141959*** 

Below Reference Age -0.0486207  0.043228 

Male -0.0359362 -0.0306013 

Foreigner -0.2478417*** -0.2012908** 

Internet -0.0531369 -0.0607908 

Low-Income  0.0875046  0.0734998 

Baseline Score { 
if 2  0.092764  0.8299373*** 

if 3  0.1596036  0.9895933*** 

if 4  0.1515098  1.039625*** 

if 5  0.4007196**  1.270225*** 

Parent Education { 
if Tertiary  0.0991892***  0.0944203*** 

if Secondary  0.0490241***  0.0490555*** 

Grade Fixed Effects ✓ ✓

School Fixed Effects ✓ ✓

         
     Adjusted R2 61.7% 61.7% 

       F statistic (overall significance) 452.10 1063.84 

(P-Value) 0.000 0.000 

       F statistic (excluded instrument significance) 1822.67 1862.4 

(P-Value) 0.000 0.000 

       F statistic (test of endogeneity) 0.0552 7.8316 

(P-Value) 0.814 0.005 

       N 97,405 97,024 

Notes: Significance levels: * p<.10, ** p<.05, *** p<.01. Robust standard errors clustered at the class level. Each model also contains dummies equal to 1 if student i 

peers' measures were computed using partial class information, i.e. if one, two or three classmates of i had missing information about their baseline scores or their place 

of birth. The class composition variables (i.e. the percentages of classmates of student i with a given characteristic) were computed in a leave-out fashion, i.e. excluding 

student i. Each model contains an intercept and pools students from grades 6 and 9. Only classes with 14 or more students were used and they had to belong to schools 
with at least one class of grade 6 and, simultaneously, another of grade 9 (i.e. each school contributed with at least two classes). 

 


